A soccer team ordered 12 jerseys and 12 pairs of shorts for a total of \[tex]$156. Later, they had to order 4 more jerseys and 6 more pairs of shorts for a total of \$[/tex]62.

The system of equations that can be used to find [tex]\(x\)[/tex], the cost of each jersey, and [tex]\(y\)[/tex], the cost of each pair of shorts, is shown below:
[tex]\[
\begin{array}{c}
12x + 12y = 156 \\
4x + 6y = 62
\end{array}
\][/tex]

What is the cost of each jersey?

A. \[tex]$5
B. \$[/tex]8
C. \[tex]$12
D. \$[/tex]13



Answer :

To determine the cost of each jersey, [tex]\( x \)[/tex], and each pair of shorts, [tex]\( y \)[/tex], we start by examining the system of equations provided:

[tex]\[ \begin{cases} 12x + 12y = 156 \quad \text{(1)} \\ 4x + 6y = 62 \quad \text{(2)} \end{cases} \][/tex]

We can simplify these equations step by step. First, divide equation (1) by 12:

[tex]\[ x + y = 13 \quad \text{(3)} \][/tex]

Next, divide equation (2) by 2:

[tex]\[ 2x + 3y = 31 \quad \text{(4)} \][/tex]

Now, we have the simplified system of equations:

[tex]\[ \begin{cases} x + y = 13 \quad \text{(3)} \\ 2x + 3y = 31 \quad \text{(4)} \end{cases} \][/tex]

Let's use the substitution method to solve this system. Start by solving equation (3) for [tex]\( y \)[/tex]:

[tex]\[ y = 13 - x \quad \text{(5)} \][/tex]

Substitute equation (5) into equation (4):

[tex]\[ 2x + 3(13 - x) = 31 \][/tex]

Expand and simplify:

[tex]\[ 2x + 39 - 3x = 31 \\ - x + 39 = 31 \\ - x = -8 \\ x = 8 \][/tex]

So, the cost of each jersey, [tex]\( x \)[/tex], is:

[tex]\[ x = 8 \][/tex]

Thus, the cost of each jersey is [tex]$\$[/tex]8[tex]$. From the provided options, the correct choice is: \[ \$[/tex]8
\]