What is the solution to this system of linear equations?

[tex]\[
\begin{array}{l}
y - 4x = 7 \\
2y + 4x = 2
\end{array}
\][/tex]

A. [tex]\((3, 1)\)[/tex]
B. [tex]\((1, 3)\)[/tex]
C. [tex]\((3, -1)\)[/tex]
D. [tex]\((-1, 3)\)[/tex]



Answer :

To solve the system of linear equations:
[tex]\[ \begin{array}{l} y - 4x = 7 \\ 2y + 4x = 2 \end{array} \][/tex]

we can use the following steps:

### Step 1: Write the equations in a standard form:
We already have the system of equations in standard form:
1. [tex]\( y - 4x = 7 \)[/tex]
2. [tex]\( 2y + 4x = 2 \)[/tex]

### Step 2: Add the two equations:

First, we add the first and second equations to eliminate [tex]\(x\)[/tex]:
[tex]\[ y - 4x + 2y + 4x = 7 + 2 \][/tex]

Simplifying, we get:
[tex]\[ 3y = 9 \][/tex]

### Step 3: Solve for [tex]\(y\)[/tex]:

[tex]\[ y = \frac{9}{3} = 3 \][/tex]

So, [tex]\( y = 3 \)[/tex].

### Step 4: Substitute [tex]\( y \)[/tex] back into one of the original equations to solve for [tex]\( x \)[/tex]:

Using the first equation:
[tex]\[ 3 - 4x = 7 \][/tex]

[tex]\[ 3 - 7 = 4x \][/tex]

[tex]\[ -4 = 4x \][/tex]

[tex]\[ x = -1 \][/tex]

### Solution

The solution to the system of equations is [tex]\( x = -1 \)[/tex] and [tex]\( y = 3 \)[/tex].

Thus, the answer to the given system of equations is:
[tex]\[ (-1, 3) \][/tex]

So, the correct option is:

[tex]\[ \boxed{(-1, 3)} \][/tex]