Select the correct answer.

The endpoints of [tex]$\overline{GH}$[/tex] are [tex]$G (14,3)$[/tex] and [tex][tex]$H (10,-6)$[/tex][/tex]. What is the midpoint of [tex]$\overline{GH}$[/tex]?

A. [tex]$(6, -15)$[/tex]

B. [tex]$\left( -2, -\frac{9}{2} \right)$[/tex]

C. [tex][tex]$\left( 12, -\frac{3}{2} \right)$[/tex][/tex]

D. [tex]$(24, -3)$[/tex]

E. [tex]$(18, 12)$[/tex]



Answer :

To determine the midpoint of the line segment [tex]\(\overline{GH}\)[/tex] with endpoints [tex]\(G(14, 3)\)[/tex] and [tex]\(H(10, -6)\)[/tex], we use the midpoint formula. The midpoint formula states that for any two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex], the coordinates of the midpoint [tex]\((M)\)[/tex] are calculated as follows:

[tex]\[ M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) \][/tex]

Given the points [tex]\(G(14, 3)\)[/tex] and [tex]\(H(10, -6)\)[/tex]:

1. Calculate the [tex]\(x\)[/tex]-coordinate of the midpoint:
[tex]\[ x = \frac{14 + 10}{2} = \frac{24}{2} = 12 \][/tex]

2. Calculate the [tex]\(y\)[/tex]-coordinate of the midpoint:
[tex]\[ y = \frac{3 + (-6)}{2} = \frac{3 - 6}{2} = \frac{-3}{2} = -1.5 \][/tex]

Thus, the coordinates of the midpoint are:
[tex]\[ \left(12, -\frac{3}{2}\right) \][/tex]

Therefore, the correct answer is:

C. [tex]\(\left(12, -\frac{3}{2}\right)\)[/tex]