5. Which expression is equivalent to [tex]2(x^2 - 1) + 3x(x - 4)[/tex]?

1) [tex]5x^2 - 5[/tex]
2) [tex]5x^2 - 6[/tex]
3) [tex]5x^2 - 12x - 1[/tex]
4) [tex]5x^2 - 12x - 2[/tex]



Answer :

To determine which expression is equivalent to [tex]\(2 (x^2 - 1) + 3 x (x - 4)\)[/tex], we need to simplify the given expression.

First, we expand each part of the given expression:

1. Simplify [tex]\(2 (x^2 - 1)\)[/tex]:
[tex]\[ 2 (x^2 - 1) = 2 \cdot x^2 - 2 \cdot 1 = 2x^2 - 2 \][/tex]

2. Simplify [tex]\(3 x (x - 4)\)[/tex]:
[tex]\[ 3 x (x - 4) = 3x \cdot x - 3x \cdot 4 = 3x^2 - 12x \][/tex]

Next, we combine the simplified results from steps 1 and 2:

[tex]\[ 2x^2 - 2 + 3x^2 - 12x \][/tex]

Combine like terms:

[tex]\[ (2x^2 + 3x^2) + (-12x) + (-2) = 5x^2 - 12x - 2 \][/tex]

Hence, the expression [tex]\(2 (x^2 - 1) + 3 x (x - 4)\)[/tex] simplifies to [tex]\(5x^2 - 12x - 2\)[/tex].

So, the correct match is:

4) [tex]\(5 x^2 - 12 x - 2\)[/tex]

Other Questions