Answer :

Sure, let's go through a detailed, step-by-step solution to prove that
[tex]\[ \frac{1}{1 - \sin \alpha} + \frac{1}{1 + \sin \alpha} = 2 \sec^2 \alpha. \][/tex]

### Step-by-Step Solution

1. Combine the Fractions:
We have two fractions that we want to combine:
[tex]\[ \frac{1}{1 - \sin \alpha} + \frac{1}{1 + \sin \alpha}. \][/tex]

To combine these fractions, we need a common denominator. The common denominator will be the product of the two denominators:
[tex]\[ (1 - \sin \alpha)(1 + \sin \alpha). \][/tex]

2. Find the Common Denominator:
Compute the product of the denominators:
[tex]\[ (1 - \sin \alpha)(1 + \sin \alpha) = 1 - (\sin \alpha)^2. \][/tex]

Using the Pythagorean identity [tex]\( \sin^2 \alpha + \cos^2 \alpha = 1 \)[/tex], we get:
[tex]\[ 1 - \sin^2 \alpha = \cos^2 \alpha. \][/tex]

Hence, the common denominator is [tex]\( \cos^2 \alpha \)[/tex].

3. Rewrite Each Fraction:
Rewrite each fraction with the common denominator [tex]\( \cos^2 \alpha \)[/tex]:
[tex]\[ \frac{1}{1 - \sin \alpha} = \frac{1 + \sin \alpha}{\cos^2 \alpha}, \][/tex]
[tex]\[ \frac{1}{1 + \sin \alpha} = \frac{1 - \sin \alpha}{\cos^2 \alpha}. \][/tex]

4. Add the Fractions:
Now, add the two fractions:
[tex]\[ \frac{1 + \sin \alpha}{\cos^2 \alpha} + \frac{1 - \sin \alpha}{\cos^2 \alpha}. \][/tex]

Since they have the same denominator, we combine the numerators:
[tex]\[ \frac{(1 + \sin \alpha) + (1 - \sin \alpha)}{\cos^2 \alpha} = \frac{1 + \sin \alpha + 1 - \sin \alpha}{\cos^2 \alpha}. \][/tex]

5. Simplify the Numerator:
Simplify the numerator by combining like terms:
[tex]\[ 1 + \sin \alpha + 1 - \sin \alpha = 2. \][/tex]

So, the expression simplifies to:
[tex]\[ \frac{2}{\cos^2 \alpha}. \][/tex]

6. Express in Terms of Secant:
Recall that [tex]\( \sec \alpha = \frac{1}{\cos \alpha} \)[/tex]. Thus, [tex]\( \sec^2 \alpha = \frac{1}{\cos^2 \alpha} \)[/tex].

Therefore:
[tex]\[ \frac{2}{\cos^2 \alpha} = 2 \sec^2 \alpha. \][/tex]

So, we have proven that:
[tex]\[ \frac{1}{1 - \sin \alpha} + \frac{1}{1 + \sin \alpha} = 2 \sec^2 \alpha. \][/tex]

This completes our proof.