To solve for [tex]\( x \)[/tex] in the equation [tex]\( y = -5(6 + x) \)[/tex], follow these steps:
1. Distribute the [tex]\(-5\)[/tex] across the terms inside the parentheses:
[tex]\[
y = -5 \cdot 6 + (-5) \cdot x
\][/tex]
Simplifying this yields:
[tex]\[
y = -30 - 5x
\][/tex]
2. Isolate the term involving [tex]\( x \)[/tex]:
Move [tex]\(-30\)[/tex] to the left side of the equation by adding [tex]\( 30 \)[/tex] to both sides:
[tex]\[
y + 30 = -5x
\][/tex]
3. Solve for [tex]\( x \)[/tex]:
Divide both sides of the equation by [tex]\(-5\)[/tex]:
[tex]\[
\frac{y + 30}{-5} = x
\][/tex]
Therefore, the solution for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex] is:
[tex]\[
x = \frac{y + 30}{-5}
\][/tex]