Answer :

To solve for [tex]\( x \)[/tex] in the equation [tex]\( y = -5(6 + x) \)[/tex], follow these steps:

1. Distribute the [tex]\(-5\)[/tex] across the terms inside the parentheses:
[tex]\[ y = -5 \cdot 6 + (-5) \cdot x \][/tex]
Simplifying this yields:
[tex]\[ y = -30 - 5x \][/tex]

2. Isolate the term involving [tex]\( x \)[/tex]:
Move [tex]\(-30\)[/tex] to the left side of the equation by adding [tex]\( 30 \)[/tex] to both sides:
[tex]\[ y + 30 = -5x \][/tex]

3. Solve for [tex]\( x \)[/tex]:
Divide both sides of the equation by [tex]\(-5\)[/tex]:
[tex]\[ \frac{y + 30}{-5} = x \][/tex]

Therefore, the solution for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex] is:
[tex]\[ x = \frac{y + 30}{-5} \][/tex]