Answer :
Sure, let's go through the detailed, step-by-step solution for evaluating the function [tex]\( f(x) = \frac{2}{x+2} \)[/tex] at a specific value of [tex]\( x \)[/tex].
Step 1: Understand the function [tex]\( f(x) \)[/tex]
The function given is:
[tex]\[ f(x) = \frac{2}{x+2} \][/tex]
Step 2: Choose a specific value for [tex]\( x \)[/tex]
Let's choose [tex]\( x = 3 \)[/tex] as the specific value to evaluate the function.
Step 3: Substitute the chosen value of [tex]\( x \)[/tex] into the function
We need to substitute [tex]\( x = 3 \)[/tex] into the function:
[tex]\[ f(3) = \frac{2}{3+2} \][/tex]
Step 4: Simplify the expression
Now we need to simplify the expression inside the function:
[tex]\[ f(3) = \frac{2}{5} \][/tex]
Step 5: Calculate the result
Finally, calculate the value:
[tex]\[ f(3) = 0.4 \][/tex]
Therefore, the value of the function [tex]\( f(x) = \frac{2}{x+2} \)[/tex] at [tex]\( x = 3 \)[/tex] is [tex]\( 0.4 \)[/tex].
Step 1: Understand the function [tex]\( f(x) \)[/tex]
The function given is:
[tex]\[ f(x) = \frac{2}{x+2} \][/tex]
Step 2: Choose a specific value for [tex]\( x \)[/tex]
Let's choose [tex]\( x = 3 \)[/tex] as the specific value to evaluate the function.
Step 3: Substitute the chosen value of [tex]\( x \)[/tex] into the function
We need to substitute [tex]\( x = 3 \)[/tex] into the function:
[tex]\[ f(3) = \frac{2}{3+2} \][/tex]
Step 4: Simplify the expression
Now we need to simplify the expression inside the function:
[tex]\[ f(3) = \frac{2}{5} \][/tex]
Step 5: Calculate the result
Finally, calculate the value:
[tex]\[ f(3) = 0.4 \][/tex]
Therefore, the value of the function [tex]\( f(x) = \frac{2}{x+2} \)[/tex] at [tex]\( x = 3 \)[/tex] is [tex]\( 0.4 \)[/tex].