Solve for [tex]\( x \)[/tex]:
[tex]\[ 3x = 6x - 2 \][/tex]


Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----
CRA Alg1 Module 4 Day1 Factoring by grouping
3. Factor [tex]$x^2 + 10x + 15x + 150$[/tex] by grouping
[tex]$=$[/tex] Enter your next step here
[tex]$x+(0)+\frac{18}{48}+\frac{9}{16}$[/tex]
-----

Response:
CRA Algebra 1, Module 4, Day 1: Factoring by Grouping

3. Factor [tex]\( x^2 + 10x + 15x + 150 \)[/tex] by grouping.

Enter your next step here:

[tex]\[ x^2 + 10x + 15x + 150 = \][/tex]

[tex]\[ \][/tex]



Answer :

Let's factor the given polynomial [tex]\( x^2 + 10x + 15x + 150 \)[/tex] by grouping. We'll proceed step-by-step.

### Step 1: Group the terms
Group the polynomial into two pairs:
[tex]\[ x^2 + 10x + 15x + 150 \][/tex]
which can be written as:
[tex]\[ (x^2 + 10x) + (15x + 150) \][/tex]

### Step 2: Factor out the common factors in each group
Factor out the greatest common factor (GCF) from each group:
[tex]\[ x(x + 10) + 15(x + 10) \][/tex]

### Step 3: Factor out the common binomial factor
Now, notice that [tex]\( x + 10 \)[/tex] is a common factor in both groups:
[tex]\[ (x + 10)(x + 15) \][/tex]

### Conclusion
Thus, the factored form of the polynomial [tex]\( x^2 + 10x + 15x + 150 \)[/tex] is:
[tex]\[ (x + 10)(x + 15) \][/tex]