To find the value of [tex]\( x \)[/tex], we use the trigonometric expression:
[tex]\[ x = \frac{a}{\tan(b)} \][/tex]
Given the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex] from a certain context, we replace [tex]\( a \)[/tex] and [tex]\( b \)[/tex] with their specific values. For this example:
- [tex]\( a = 7 \)[/tex]
- [tex]\( b \)[/tex] in radians, where [tex]\( b = 0.7853981633974483 \)[/tex] (this is the radian measure for 45 degrees)
Using these values in the trigonometric expression, we get:
[tex]\[ x = \frac{7}{\tan(0.7853981633974483)} \][/tex]
Calculating the value of [tex]\( x \)[/tex]:
[tex]\[ \tan(0.7853981633974483) \approx 1 \][/tex]
Thus,
[tex]\[ x = \frac{7}{1} = 7 \][/tex]
Therefore, the expression to find [tex]\( x \)[/tex] is:
[tex]\[ x = \frac{7}{\tan(0.7853981633974483)} \][/tex]