Type the correct answer in the box.

What trigonometric expression can be used to find the value of [tex]$x$[/tex]? Replace [tex]$a$[/tex] and [tex][tex]$b$[/tex][/tex] with the correct values.

[tex]\frac{a}{\tan(b)}[/tex]



Answer :

To find the value of [tex]\( x \)[/tex], we use the trigonometric expression:

[tex]\[ x = \frac{a}{\tan(b)} \][/tex]

Given the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex] from a certain context, we replace [tex]\( a \)[/tex] and [tex]\( b \)[/tex] with their specific values. For this example:

- [tex]\( a = 7 \)[/tex]
- [tex]\( b \)[/tex] in radians, where [tex]\( b = 0.7853981633974483 \)[/tex] (this is the radian measure for 45 degrees)

Using these values in the trigonometric expression, we get:

[tex]\[ x = \frac{7}{\tan(0.7853981633974483)} \][/tex]

Calculating the value of [tex]\( x \)[/tex]:

[tex]\[ \tan(0.7853981633974483) \approx 1 \][/tex]

Thus,

[tex]\[ x = \frac{7}{1} = 7 \][/tex]

Therefore, the expression to find [tex]\( x \)[/tex] is:

[tex]\[ x = \frac{7}{\tan(0.7853981633974483)} \][/tex]