Select the correct answer.

Simplify the expression. What classification describes the resulting polynomial?

[tex]\left(3x^2 - 11x - 4\right) - \left(2x^2 - x - 6\right)[/tex]

A. Quadratic trinomial

B. Linear binomial

C. Quadratic binomial

D. Linear monomial



Answer :

To simplify the expression [tex]\((3x^2 - 11x - 4) - (2x^2 - x - 6)\)[/tex], we need to subtract the corresponding coefficients of the polynomials.

First, write down the given polynomials:
[tex]\[ 3x^2 - 11x - 4 \quad \text{and} \quad 2x^2 - x - 6 \][/tex]

Now, perform the subtraction term by term:

1. For the [tex]\(x^2\)[/tex] terms:
[tex]\[ 3x^2 - 2x^2 = 1x^2 \][/tex]

2. For the [tex]\(x\)[/tex] terms:
[tex]\[ -11x - (-x) = -11x + x = -10x \][/tex]

3. For the constant terms:
[tex]\[ -4 - (-6) = -4 + 6 = 2 \][/tex]

Putting it all together, the resulting polynomial is:
[tex]\[ 1x^2 - 10x + 2 \][/tex]

This polynomial is a second-degree polynomial (the highest power of [tex]\(x\)[/tex] is 2) with three terms: [tex]\(x^2\)[/tex], [tex]\(x\)[/tex], and the constant term. Therefore, it is classified as a quadratic trinomial.

Thus, the correct answer is:
[tex]\[ \boxed{\text{A. quadratic trinomial}} \][/tex]