The expression [tex](\sqrt[3]{a})^6[/tex] is equivalent to:

A. [tex]a^4[/tex]

B. [tex]a[/tex]

C. [tex]a^2[/tex]

D. [tex]a^3[/tex]



Answer :

Sure! Let's work through the expression [tex]\((\sqrt[3]{a})^6\)[/tex] step by step.

### Step-by-Step Solution

1. Understand the given expression:
The expression we need to simplify is [tex]\((\sqrt[3]{a})^6\)[/tex].

2. Rewrite the expression using exponents:
[tex]\(\sqrt[3]{a}\)[/tex] can be rewritten as [tex]\(a^{1/3}\)[/tex]. So, we rewrite the given expression:
[tex]\[ (\sqrt[3]{a})^6 = (a^{1/3})^6. \][/tex]

3. Simplify the expression using the exponentiation rule:
We use the rule of exponents [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]. Here, [tex]\(m = \frac{1}{3}\)[/tex] and [tex]\(n = 6\)[/tex]. Therefore:
[tex]\[ (a^{1/3})^6 = a^{1/3 \cdot 6}. \][/tex]

4. Simplify the exponent:
Multiply the exponents inside the power:
[tex]\[ 1/3 \cdot 6 = 2. \][/tex]

5. Write the final simplified expression:
Now that we have simplified the exponent, we get:
[tex]\[ a^{1/3 \cdot 6} = a^2. \][/tex]

Therefore, the expression [tex]\((\sqrt[3]{a})^6\)[/tex] simplifies to [tex]\(a^2\)[/tex].

The correct answer is:
C. [tex]\(a^2\)[/tex]