Select the correct answer.

What is the simplest form of this expression?
[tex]\[ -x\left(4x^2 - 6x + 1\right) \][/tex]

A. [tex]\(-4x^3 - 6x^2 - x\)[/tex]
B. [tex]\(-4x^3 + 6x^2 - x\)[/tex]
C. [tex]\(-4x^3 - 6x + 1\)[/tex]
D. [tex]\(-4x^3 + 5x\)[/tex]



Answer :

To simplify the expression [tex]\(-x(4x^2 - 6x + 1)\)[/tex], let’s follow these steps:

1. Distribute the [tex]\(-x\)[/tex] across each term inside the parentheses.
2. Carefully apply the distribution to each term.

Let’s proceed step-by-step:

1. Distribute [tex]\( -x \)[/tex] to the first term [tex]\( 4x^2 \)[/tex]:
[tex]\[ -x \cdot 4x^2 = -4x^3 \][/tex]

2. Distribute [tex]\( -x \)[/tex] to the second term [tex]\( -6x \)[/tex]:
[tex]\[ -x \cdot (-6x) = 6x^2 \][/tex]

3. Distribute [tex]\( -x \)[/tex] to the third term [tex]\( 1 \)[/tex]:
[tex]\[ -x \cdot 1 = -x \][/tex]

Now, combine these distributed terms together:
[tex]\[ -4x^3 + 6x^2 - x \][/tex]

So, the simplest form of the expression [tex]\(-x(4x^2 - 6x + 1)\)[/tex] is:
[tex]\[ x(-4x^2 + 6x - 1) \][/tex]

Among the provided options, the correct answer is:
B. [tex]\(-4x^3 + 6x^2 - x\)[/tex]