What values of [tex]$b$[/tex] satisfy [tex]$4(3b + 2)^2 = 64$[/tex]?

A. [tex][tex]$b = \frac{2}{3}$[/tex][/tex] and [tex]$b = -2$[/tex]

B. [tex]$b = 2$[/tex] and [tex]$b = \frac{10}{3}$[/tex]

C. [tex][tex]$b = \frac{2}{3}$[/tex][/tex] and [tex]$b = 3$[/tex]

D. [tex]$b = 2$[/tex] and [tex]$b = \frac{-10}{3}$[/tex]



Answer :

To find the values of [tex]\( b \)[/tex] that satisfy the equation [tex]\( 4(3b + 2)^2 = 64 \)[/tex], we can proceed with the following steps:

1. Divide both sides by 4:
[tex]\[ 4(3b + 2)^2 = 64 \][/tex]
Divide both sides by 4:
[tex]\[ (3b + 2)^2 = 16 \][/tex]

2. Take the square root of both sides:
[tex]\[ \sqrt{(3b + 2)^2} = \pm \sqrt{16} \][/tex]
Since [tex]\(\sqrt{16} = 4\)[/tex]:
[tex]\[ 3b + 2 = 4 \quad \text{or} \quad 3b + 2 = -4 \][/tex]

3. Solve each equation for [tex]\( b \)[/tex]:

- For [tex]\( 3b + 2 = 4 \)[/tex]:
[tex]\[ 3b + 2 = 4 \][/tex]
Subtract 2 from both sides:
[tex]\[ 3b = 2 \][/tex]
Divide by 3:
[tex]\[ b = \frac{2}{3} \][/tex]

- For [tex]\( 3b + 2 = -4 \)[/tex]:
[tex]\[ 3b + 2 = -4 \][/tex]
Subtract 2 from both sides:
[tex]\[ 3b = -6 \][/tex]
Divide by 3:
[tex]\[ b = -2 \][/tex]

Therefore, the values of [tex]\( b \)[/tex] that satisfy the equation [tex]\( 4(3b + 2)^2 = 64 \)[/tex] are:
[tex]\[ b = \frac{2}{3} \quad \text{and} \quad b = -2 \][/tex]

Among the given options:

1. [tex]\( b = \frac{2}{3} \)[/tex] and [tex]\( b = -2 \)[/tex] [tex]\( \quad \text{(correct)} \)[/tex]
2. [tex]\( b = 2 \)[/tex] and [tex]\( b = \frac{10}{3} \)[/tex]
3. [tex]\( b = \frac{2}{3} \)[/tex] and [tex]\( b = 3 \)[/tex]
4. [tex]\( b = 2 \)[/tex] and [tex]\( b = \frac{-10}{3} \)[/tex]

Thus, the correct answer is:
[tex]\[ b = \frac{2}{3} \quad \text{and} \quad b = -2 \][/tex]