Select the correct answer.

A rotating sprinkler head sprays water as far as 20 feet. The head is set to cover a central angle of [tex]80^{\circ}[/tex]. What area of grass will be watered?

A. [tex]\frac{760}{9} \pi \text{ ft}^2[/tex]

B. [tex]\frac{80}{9} \pi \text{ ft}^2[/tex]

C. [tex]\frac{200}{9} \pi \text{ ft}^2[/tex]

D. [tex]\frac{800}{9} \pi \text{ ft}^2[/tex]



Answer :

To determine the area of grass watered by the sprinkler, we need to calculate the area of a sector of a circle. The sector is defined by a radius (r) and a central angle (θ).

Given:
- Radius ([tex]\(r\)[/tex]) = 20 feet
- Central angle ([tex]\(\theta\)[/tex]) = [tex]\(80^\circ\)[/tex]

The formula for the area of a sector of a circle is given by:

[tex]\[ A = \frac{1}{2} r^2 \theta \text{ (in radians)} \][/tex]

First, we need to convert the angle from degrees to radians because the formula for the sector's area requires the angle in radians. We use the conversion factor:

[tex]\[ 1 \text{ degree} = \frac{\pi}{180} \text{ radians} \][/tex]

So, converting [tex]\(80^\circ\)[/tex] to radians:

[tex]\[ \theta \text{ (in radians)} = 80^\circ \times \frac{\pi}{180} \][/tex]

Simplifying the conversion:

[tex]\[ \theta \text{ (in radians)} = \frac{80\pi}{180} = \frac{4\pi}{9} \][/tex]

Now, we can substitute the radius and the angle in radians into the formula for the area of the sector:

[tex]\[ A = \frac{1}{2} \times 20^2 \times \frac{4\pi}{9} \][/tex]

Calculating the constants first:

[tex]\[ 20^2 = 400 \][/tex]

Then:

[tex]\[ A = \frac{1}{2} \times 400 \times \frac{4\pi}{9} = 200 \times \frac{4\pi}{9} = \frac{800\pi}{9} \][/tex]

So, the area of the grass that will be watered is:

[tex]\[ A = \frac{800}{9} \pi \, \text{ft}^2 \][/tex]

Thus, the correct answer is:

[tex]\[ \boxed{\frac{800}{9} \pi \, \text{ft}^2} \][/tex]

Therefore, the correct option is:

D. [tex]\(\frac{800}{9} \pi \, \text{ft}^2\)[/tex]