Answer :

To find the derivative [tex]\( f'(x) \)[/tex] of the function [tex]\( f(x) = \frac{2x + 8}{5x + 5} \)[/tex]:

### Step-by-Step Solution

1. Identify the Function:
[tex]\[ f(x) = \frac{2x + 8}{5x + 5} \][/tex]

2. Determine the Derivative Using the Quotient Rule:
The quotient rule states that if you have a function [tex]\( f(x) = \frac{g(x)}{h(x)} \)[/tex], then its derivative is:
[tex]\[ f'(x) = \frac{g'(x)h(x) - g(x)h'(x)}{(h(x))^2} \][/tex]

Here, [tex]\( g(x) = 2x + 8 \)[/tex] and [tex]\( h(x) = 5x + 5 \)[/tex].

3. Compute [tex]\( g'(x) \)[/tex] and [tex]\( h'(x) \)[/tex]:
[tex]\[ g(x) = 2x + 8 \quad \Rightarrow \quad g'(x) = 2 \][/tex]
[tex]\[ h(x) = 5x + 5 \quad \Rightarrow \quad h'(x) = 5 \][/tex]

4. Apply the Quotient Rule:
[tex]\[ f'(x) = \frac{(2)(5x + 5) - (2x + 8)(5)}{(5x + 5)^2} \][/tex]

5. Simplify the Expression:
- The numerator becomes:
[tex]\[ (2)(5x + 5) - (2x + 8)(5) = 10x + 10 - (10x + 40) = 10x + 10 - 10x - 40 = 10 - 40 = -30 \][/tex]
- Therefore:
[tex]\[ f'(x) = \frac{-30}{(5x + 5)^2} \][/tex]

6. Simplified Derivative:
[tex]\[ f'(x) = \frac{-5(2x + 8)}{(5x + 5)^2} + \frac{2}{5x + 5} \][/tex]

So the derivative of the function is:

[tex]\[ f'(x) = -\frac{5(2x + 8)}{(5x + 5)^2} + \frac{2}{5x + 5} \][/tex]

### To find [tex]\( f'(4) \)[/tex]:

7. Substitute [tex]\( x = 4 \)[/tex] into the derivative:
[tex]\[ f'(4) = -\frac{5(2(4) + 8)}{(5(4) + 5)^2} + \frac{2}{5(4) + 5} \][/tex]
Simplifying the terms:
[tex]\[ 2(4) + 8 = 8 + 8 = 16 \][/tex]
[tex]\[ 5(4) + 5 = 20 + 5 = 25 \][/tex]
So:
[tex]\[ f'(4) = -\frac{5 \cdot 16}{25^2} + \frac{2}{25} \][/tex]
[tex]\[ f'(4) = -\frac{80}{625} + \frac{2}{25} \][/tex]
Simplifying further:
[tex]\[ \frac{2}{25} = \frac{2 \times 25}{25 \times 25} = \frac{50}{625} \][/tex]
[tex]\[ f'(4) = -\frac{80}{625} + \frac{50}{625} = \frac{-80 + 50}{625} = \frac{-30}{625} = -\frac{6}{125} \][/tex]

So:

[tex]\[ f'(x) = -\frac{5(2x + 8)}{(5x + 5)^2} + \frac{2}{5x + 5} \][/tex]

[tex]\[ f'(4) = -\frac{6}{125} \][/tex]