Factoring Trinomials: [tex]\( a \ \textgreater \ 1 \)[/tex]

Which is the factorization of [tex]\( 8x^2 + 13x - 6 \)[/tex]?

A. [tex]\((8x - 3)(x + 2)\)[/tex]
B. [tex]\((x - 6)(8x + 1)\)[/tex]
C. [tex]\((2x - 2)(4x + 3)\)[/tex]
D. [tex]\((4x - 1)(2x + 6)\)[/tex]



Answer :

To factor the trinomial [tex]\(8x^2 + 13x - 6\)[/tex], let's go through the process step by step:

1. Understand the Form: The trinomial is in the form [tex]\(ax^2 + bx + c\)[/tex], where [tex]\(a = 8\)[/tex], [tex]\(b = 13\)[/tex], and [tex]\(c = -6\)[/tex].

2. Find the Product and Sum: We need two numbers that multiply to [tex]\(a \cdot c = 8 \cdot (-6) = -48\)[/tex] and add up to [tex]\(b = 13\)[/tex].

3. List Factors of -48: Identify pairs of factors that multiply to -48:
- (-1, 48)
- (-2, 24)
- (-3, 16)
- (-4, 12)
- (-6, 8)
- (1, -48)
- (2, -24)
- (3, -16)
- (4, -12)
- (6, -8)

4. Find the Correct Pair: Look for the pair that adds up to [tex]\(b = 13\)[/tex]:
- The correct pair is (-3, 16) because [tex]\(-3 + 16 = 13\)[/tex].

5. Rewrite the Middle Term: Use the pair to split the middle term:
[tex]\[ 8x^2 + 13x - 6 = 8x^2 - 3x + 16x - 6 \][/tex]

6. Group and Factor by Grouping:
[tex]\[ 8x^2 - 3x + 16x - 6 = (8x^2 - 3x) + (16x - 6) \][/tex]
Factor out the greatest common factor (GCF) from each group:
[tex]\[ = x(8x - 3) + 2(8x - 3) \][/tex]

7. Factor Out the Common Binomial:
[tex]\[ = (x + 2)(8x - 3) \][/tex]

So, the factorization of [tex]\(8x^2 + 13x - 6\)[/tex] is [tex]\((x + 2)(8x - 3)\)[/tex].

Thus, the correct answer is:
[tex]\[ (x + 2)(8x - 3) \][/tex]

Final Answer:
[tex]\[ (x + 2)(8x - 3) \][/tex]