To solve the given formula for [tex]\( V_1 \)[/tex]:
[tex]\[ a = \frac{V_1 - V_0}{t} \][/tex]
we need to isolate [tex]\( V_1 \)[/tex]. Here’s the step-by-step process to do that:
1. Multiply both sides of the equation by [tex]\( t \)[/tex] to eliminate the denominator on the right side. This gives us:
[tex]\[ a \cdot t = V_1 - V_0 \][/tex]
2. Add [tex]\( V_0 \)[/tex] to both sides to isolate [tex]\( V_1 \)[/tex] on one side of the equation:
[tex]\[ a \cdot t + V_0 = V_1 \][/tex]
So, we have:
[tex]\[ V_1 = a \cdot t + V_0 \][/tex]
Thus, the correct choice from the options provided is:
B. [tex]\( V_1 = a \cdot t + V_0 \)[/tex]