Solve the following formula for [tex]\( V_1 \)[/tex].

[tex]\[ a = \frac{V_1 - V_0}{t} \][/tex]

A. [tex]\( V_1 = a t - V_0 \)[/tex]

B. [tex]\( V_1 = a t + V_0 \)[/tex]

C. [tex]\( V_1 = -a t + V_0 \)[/tex]

D. [tex]\( V_1 = -a t - V_0 \)[/tex]



Answer :

To solve the given formula for [tex]\( V_1 \)[/tex]:

[tex]\[ a = \frac{V_1 - V_0}{t} \][/tex]

we need to isolate [tex]\( V_1 \)[/tex]. Here’s the step-by-step process to do that:

1. Multiply both sides of the equation by [tex]\( t \)[/tex] to eliminate the denominator on the right side. This gives us:

[tex]\[ a \cdot t = V_1 - V_0 \][/tex]

2. Add [tex]\( V_0 \)[/tex] to both sides to isolate [tex]\( V_1 \)[/tex] on one side of the equation:

[tex]\[ a \cdot t + V_0 = V_1 \][/tex]

So, we have:

[tex]\[ V_1 = a \cdot t + V_0 \][/tex]

Thus, the correct choice from the options provided is:

B. [tex]\( V_1 = a \cdot t + V_0 \)[/tex]