Solve the following formula for [tex]$m$[/tex].

[tex]\[ v^2 = \frac{3P}{mn} \][/tex]

A. [tex]\[ m = \frac{3n}{v^2} \][/tex]

B. [tex]\[ m = \frac{3n}{v^2 P} \][/tex]

C. [tex]\[ m = \frac{3P}{v^2 n} \][/tex]

D. can't be solved for [tex]$m$[/tex]



Answer :

To solve the given formula [tex]\( v^2 = \frac{3P}{mn} \)[/tex] for [tex]\( m \)[/tex], follow these steps:

1. Start with the given equation:
[tex]\[ v^2 = \frac{3P}{mn} \][/tex]

2. To isolate [tex]\( m \)[/tex], first get rid of the fraction by multiplying both sides of the equation by [tex]\( mn \)[/tex]:
[tex]\[ v^2 \cdot mn = 3P \][/tex]

3. Next, to solve for [tex]\( m \)[/tex], divide both sides of the equation by [tex]\( v^2 n \)[/tex]:
[tex]\[ m = \frac{3P}{v^2 n} \][/tex]

Thus, the correct solution is:
[tex]\[ m = \frac{3P}{v^2 n} \][/tex]

Therefore, the correct option is:
C. [tex]\( m = \frac{3 P}{v^2 n} \)[/tex]