Let [tex]$f(x) = x^3 + 3x^2 - 45x + 2$[/tex].

1. Sketch the function using a graphing tool and answer the following:

(a) Use the definition of a derivative or the derivative rules to find [tex]f'(x)[/tex].

[tex]f'(x) = 3x^2 + 6x - 45[/tex]

(b) Use the definition of a derivative or the derivative rules to find [tex]f''(x)[/tex].

[tex]f''(x) = \boxed{}[/tex]



Answer :

Alright, let's solve the given problems step-by-step.

(a) First, we need to find the first derivative of the function [tex]\( f(x) = x^3 + 3x^2 - 45x + 2 \)[/tex].

To find the first derivative, we use the power rule. The power rule states that if [tex]\( f(x) = x^n \)[/tex], then [tex]\( f'(x) = nx^{n-1} \)[/tex]. We'll apply this rule to each term in the function [tex]\( f(x) \)[/tex].

1. For the term [tex]\( x^3 \)[/tex]:
[tex]\[ \frac{d}{dx}(x^3) = 3x^2 \][/tex]

2. For the term [tex]\( 3x^2 \)[/tex]:
[tex]\[ \frac{d}{dx}(3x^2) = 3 \cdot 2x = 6x \][/tex]

3. For the term [tex]\( -45x \)[/tex]:
[tex]\[ \frac{d}{dx}(-45x) = -45 \][/tex]

4. For the constant term [tex]\( 2 \)[/tex]:
[tex]\[ \frac{d}{dx}(2) = 0 \][/tex]

Putting it all together, the first derivative [tex]\( f'(x) \)[/tex] is:
[tex]\[ f'(x) = 3x^2 + 6x - 45 \][/tex]

(b) Now, we need to find the second derivative of the function [tex]\( f(x) \)[/tex]. To do this, we differentiate [tex]\( f'(x) \)[/tex]:

[tex]\[ f'(x) = 3x^2 + 6x - 45 \][/tex]

Let's apply the power rule again to each term in the first derivative [tex]\( f'(x) \)[/tex]:

1. For the term [tex]\( 3x^2 \)[/tex]:
[tex]\[ \frac{d}{dx}(3x^2) = 3 \cdot 2x = 6x \][/tex]

2. For the term [tex]\( 6x \)[/tex]:
[tex]\[ \frac{d}{dx}(6x) = 6 \][/tex]

3. For the constant term [tex]\( -45 \)[/tex]:
[tex]\[ \frac{d}{dx}(-45) = 0 \][/tex]

Putting it all together, the second derivative [tex]\( f''(x) \)[/tex] is:
[tex]\[ f''(x) = 6x + 6 \][/tex]

So the final answers are:
[tex]\[ f'(x) = 3x^2 + 6x - 45 \][/tex]
[tex]\[ f''(x) = 6x + 6 \][/tex]