Answer :
Certainly! Let's break down the problem step-by-step in a detailed manner.
1. Expression 1: Evaluate [tex]\( -7^2 \)[/tex]
First, we need to evaluate the expression [tex]\( -7^2 \)[/tex].
The expression [tex]\( -7^2 \)[/tex] means you take 7 and square it first, then apply the negative sign:
So, [tex]\( 7^2 = 7 \times 7 = 49 \)[/tex].
Then, applying the negative sign:
[tex]\( -7^2 = -(7^2) = -49 \)[/tex].
2. Expression 2: Evaluate [tex]\( 53 - 15^2 \)[/tex]
Next, we need to evaluate the expression [tex]\( 53 - 15^2 \)[/tex].
First, we calculate [tex]\( 15^2 \)[/tex]:
[tex]\( 15^2 = 15 \times 15 = 225 \)[/tex].
Then, subtract that result from 53:
[tex]\( 53 - 15^2 = 53 - 225 = 53 - 225 = -172 \)[/tex].
3. Summary of Results
With both expressions evaluated, we have:
[tex]\( -7^2 = -49 \)[/tex]
[tex]\( 53 - 15^2 = -172 \)[/tex]
Thus, the final results for the expressions are:
- For [tex]\( -7^2 \)[/tex]: [tex]\(-49\)[/tex]
- For [tex]\( 53 - 15^2 \)[/tex]: [tex]\(-172\)[/tex]
So, we have:
[tex]\[ (\text{Expression 1 result}, \text{Expression 2 result}) = (-49, -172) \][/tex]
1. Expression 1: Evaluate [tex]\( -7^2 \)[/tex]
First, we need to evaluate the expression [tex]\( -7^2 \)[/tex].
The expression [tex]\( -7^2 \)[/tex] means you take 7 and square it first, then apply the negative sign:
So, [tex]\( 7^2 = 7 \times 7 = 49 \)[/tex].
Then, applying the negative sign:
[tex]\( -7^2 = -(7^2) = -49 \)[/tex].
2. Expression 2: Evaluate [tex]\( 53 - 15^2 \)[/tex]
Next, we need to evaluate the expression [tex]\( 53 - 15^2 \)[/tex].
First, we calculate [tex]\( 15^2 \)[/tex]:
[tex]\( 15^2 = 15 \times 15 = 225 \)[/tex].
Then, subtract that result from 53:
[tex]\( 53 - 15^2 = 53 - 225 = 53 - 225 = -172 \)[/tex].
3. Summary of Results
With both expressions evaluated, we have:
[tex]\( -7^2 = -49 \)[/tex]
[tex]\( 53 - 15^2 = -172 \)[/tex]
Thus, the final results for the expressions are:
- For [tex]\( -7^2 \)[/tex]: [tex]\(-49\)[/tex]
- For [tex]\( 53 - 15^2 \)[/tex]: [tex]\(-172\)[/tex]
So, we have:
[tex]\[ (\text{Expression 1 result}, \text{Expression 2 result}) = (-49, -172) \][/tex]