The provided text appears to be nonsensical and contains numerous typographical and formatting errors. Let's rewrite it to make sense and ensure it is clear and correct.

Original Text:
-----
Shery (ara [tex]$-7^2$[/tex]
numaio a 53 tiere un peso de 16
[tex]$
\begin{array}{l}
53-15^2 2 p^6 35^6 44^{44} 6 d^{\circ}=53 \\
67.15^2 2 p^6 35^6 4 f^4 6 d^{10}
\end{array}
$[/tex]
-----

Rewritten Text:
Calculate the following expressions:

[tex]\[ -7^2 \][/tex]

[tex]\[ 53 - 15^2 \][/tex]

[tex]\[ 2p^6 \][/tex]

[tex]\[ 35^6 \][/tex]

[tex]\[ 44^{44} \][/tex]

[tex]\[ 6d^{\circ} = 53 \][/tex]

[tex]\[ 67.15^2 \][/tex]

[tex]\[ 2p^6 \][/tex]

[tex]\[ 35^6 \][/tex]

[tex]\[ 4f^4 \][/tex]

[tex]\[ 6d^{10} \][/tex]



Answer :

Certainly! Let's break down the problem step-by-step in a detailed manner.

1. Expression 1: Evaluate [tex]\( -7^2 \)[/tex]

First, we need to evaluate the expression [tex]\( -7^2 \)[/tex].

The expression [tex]\( -7^2 \)[/tex] means you take 7 and square it first, then apply the negative sign:

So, [tex]\( 7^2 = 7 \times 7 = 49 \)[/tex].

Then, applying the negative sign:

[tex]\( -7^2 = -(7^2) = -49 \)[/tex].

2. Expression 2: Evaluate [tex]\( 53 - 15^2 \)[/tex]

Next, we need to evaluate the expression [tex]\( 53 - 15^2 \)[/tex].

First, we calculate [tex]\( 15^2 \)[/tex]:

[tex]\( 15^2 = 15 \times 15 = 225 \)[/tex].

Then, subtract that result from 53:

[tex]\( 53 - 15^2 = 53 - 225 = 53 - 225 = -172 \)[/tex].

3. Summary of Results

With both expressions evaluated, we have:

[tex]\( -7^2 = -49 \)[/tex]

[tex]\( 53 - 15^2 = -172 \)[/tex]

Thus, the final results for the expressions are:
- For [tex]\( -7^2 \)[/tex]: [tex]\(-49\)[/tex]
- For [tex]\( 53 - 15^2 \)[/tex]: [tex]\(-172\)[/tex]

So, we have:

[tex]\[ (\text{Expression 1 result}, \text{Expression 2 result}) = (-49, -172) \][/tex]