Answer :

Sure! Let's simplify the expression step-by-step.

1) Given expression: [tex]\(-6(a + 8)\)[/tex]

Step 1: Apply the distributive property. The distributive property states that [tex]\(a(b + c) = ab + ac\)[/tex]. In this case, you need to distribute [tex]\(-6\)[/tex] to both [tex]\(a\)[/tex] and [tex]\(8\)[/tex].

[tex]\[ -6(a + 8) = -6 \cdot a + -6 \cdot 8 \][/tex]

Step 2: Perform the multiplication.

[tex]\[ -6 \cdot a = -6a \][/tex]

[tex]\[ -6 \cdot 8 = -48 \][/tex]

Step 3: Combine the results from step 2.

[tex]\[ -6a + -48 \][/tex]

Step 4: Simplify the expression.

[tex]\[ -6a - 48 \][/tex]

So, the simplified expression for [tex]\(-6(a + 8)\)[/tex] is:

[tex]\[ \boxed{-6a - 48} \][/tex]