Sure! Let's simplify the expression step-by-step.
1) Given expression: [tex]\(-6(a + 8)\)[/tex]
Step 1: Apply the distributive property. The distributive property states that [tex]\(a(b + c) = ab + ac\)[/tex]. In this case, you need to distribute [tex]\(-6\)[/tex] to both [tex]\(a\)[/tex] and [tex]\(8\)[/tex].
[tex]\[
-6(a + 8) = -6 \cdot a + -6 \cdot 8
\][/tex]
Step 2: Perform the multiplication.
[tex]\[
-6 \cdot a = -6a
\][/tex]
[tex]\[
-6 \cdot 8 = -48
\][/tex]
Step 3: Combine the results from step 2.
[tex]\[
-6a + -48
\][/tex]
Step 4: Simplify the expression.
[tex]\[
-6a - 48
\][/tex]
So, the simplified expression for [tex]\(-6(a + 8)\)[/tex] is:
[tex]\[
\boxed{-6a - 48}
\][/tex]