Fill in the [tex]t[/tex]-table below for the equation [tex]y = 3x + 4[/tex] by selecting two of the points from your table.

[tex]\[
y = 3x + 4
\][/tex]

\begin{tabular}{|r|r|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-1 & \\
\hline
0 & \\
\hline
1 & \\
\hline
\end{tabular}



Answer :

Let's fill in the [tex]\( t \)[/tex]-table for the equation [tex]\( y = 3x + 4 \)[/tex].

First, we will find the value of [tex]\( y \)[/tex] for each given [tex]\( x \)[/tex] value.

1. For [tex]\( x = -1 \)[/tex]:
[tex]\[ y = 3(-1) + 4 = -3 + 4 = 1 \][/tex]
So, when [tex]\( x = -1 \)[/tex], [tex]\( y = 1 \)[/tex].

2. For [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 3(0) + 4 = 0 + 4 = 4 \][/tex]
So, when [tex]\( x = 0 \)[/tex], [tex]\( y = 4 \)[/tex].

3. For [tex]\( x = 1 \)[/tex]:
[tex]\[ y = 3(1) + 4 = 3 + 4 = 7 \][/tex]
So, when [tex]\( x = 1 \)[/tex], [tex]\( y = 7 \)[/tex].

Now, let's fill in the [tex]\( t \)[/tex]-table with these values:

[tex]\[ \begin{tabular}{|r|r|} \hline $x$ & $y$ \\ \hline -1 & 1 \\ \hline 0 & 4 \\ \hline 1 & 7 \\ \hline \end{tabular} \][/tex]

To select two points from the table, we can choose any two. Here are two examples:

1. [tex]\((-1, 1)\)[/tex]
2. [tex]\((0, 4)\)[/tex]

These points represent solutions to the equation [tex]\( y = 3x + 4 \)[/tex].