Answer :
First, let’s analyze the problem step by step:
1. Given Data:
- Radius of the cylinder, [tex]\( r = 0.5 \)[/tex] meters
- Height of the cylinder, [tex]\( h = 1.4 \)[/tex] meters
- [tex]\( \pi = \frac{22}{7} \)[/tex]
- 1 cubic meter = 1,000 liters
2. Formula for the Volume of a Cylinder:
The volume [tex]\( V \)[/tex] of a cylinder can be calculated using the formula:
[tex]\[ V = \pi r^2 h \][/tex]
3. Substitute the values:
- Radius [tex]\( r = 0.5 \)[/tex] meters
- Height [tex]\( h = 1.4 \)[/tex] meters
- [tex]\( \pi = \frac{22}{7} \)[/tex]
Therefore,
[tex]\[ V = \left(\frac{22}{7}\right) \times (0.5)^2 \times 1.4 \][/tex]
4. Calculate [tex]\( (0.5)^2 \)[/tex]:
[tex]\[ (0.5)^2 = 0.25 \][/tex]
5. Substitute into the volume formula:
[tex]\[ V = \left(\frac{22}{7}\right) \times 0.25 \times 1.4 \][/tex]
6. Simplify the multiplication:
[tex]\[ V = 0.25 \times 1.4 = 0.35 \][/tex]
Now the expression is:
[tex]\[ V = \left(\frac{22}{7}\right) \times 0.35 \][/tex]
7. Calculate the product of [tex]\( \frac{22}{7} \)[/tex] and 0.35:
[tex]\[ V = \left(\frac{22 \times 0.35}{7}\right) \][/tex]
8. Simplify further:
[tex]\[ 22 \times 0.35 = 7.7 \][/tex]
[tex]\[ V = \frac{7.7}{7} = 1.1 \text{ cubic meters} \][/tex]
9. Convert cubic meters to liters:
Since 1 cubic meter = 1,000 liters,
[tex]\[ 1.1 \text{ cubic meters} = 1.1 \times 1000 = 1100 \text{ liters} \][/tex]
Therefore, the volume of water that the container can store is [tex]\( 1,100 \)[/tex] liters.
So the correct answer is:
[tex]\[ \boxed{1100 \text{ liters}} \][/tex]
1. Given Data:
- Radius of the cylinder, [tex]\( r = 0.5 \)[/tex] meters
- Height of the cylinder, [tex]\( h = 1.4 \)[/tex] meters
- [tex]\( \pi = \frac{22}{7} \)[/tex]
- 1 cubic meter = 1,000 liters
2. Formula for the Volume of a Cylinder:
The volume [tex]\( V \)[/tex] of a cylinder can be calculated using the formula:
[tex]\[ V = \pi r^2 h \][/tex]
3. Substitute the values:
- Radius [tex]\( r = 0.5 \)[/tex] meters
- Height [tex]\( h = 1.4 \)[/tex] meters
- [tex]\( \pi = \frac{22}{7} \)[/tex]
Therefore,
[tex]\[ V = \left(\frac{22}{7}\right) \times (0.5)^2 \times 1.4 \][/tex]
4. Calculate [tex]\( (0.5)^2 \)[/tex]:
[tex]\[ (0.5)^2 = 0.25 \][/tex]
5. Substitute into the volume formula:
[tex]\[ V = \left(\frac{22}{7}\right) \times 0.25 \times 1.4 \][/tex]
6. Simplify the multiplication:
[tex]\[ V = 0.25 \times 1.4 = 0.35 \][/tex]
Now the expression is:
[tex]\[ V = \left(\frac{22}{7}\right) \times 0.35 \][/tex]
7. Calculate the product of [tex]\( \frac{22}{7} \)[/tex] and 0.35:
[tex]\[ V = \left(\frac{22 \times 0.35}{7}\right) \][/tex]
8. Simplify further:
[tex]\[ 22 \times 0.35 = 7.7 \][/tex]
[tex]\[ V = \frac{7.7}{7} = 1.1 \text{ cubic meters} \][/tex]
9. Convert cubic meters to liters:
Since 1 cubic meter = 1,000 liters,
[tex]\[ 1.1 \text{ cubic meters} = 1.1 \times 1000 = 1100 \text{ liters} \][/tex]
Therefore, the volume of water that the container can store is [tex]\( 1,100 \)[/tex] liters.
So the correct answer is:
[tex]\[ \boxed{1100 \text{ liters}} \][/tex]