For each value below, enter the number correct to four decimal places.

Suppose an arrow is shot upward on the moon with a velocity of [tex]62 \, \text{m/s}[/tex], then its height in meters after [tex]t[/tex] seconds is given by [tex]h(t) = 62t - 0.83t^2[/tex].

Find the average velocity over the given time intervals.

[tex][8, 9]: \, \square[/tex]

[tex][8, 8.5]: \, \square[/tex]

[tex][8, 8.1]: \, \square[/tex]

[tex][8, 8.01]: \, \square[/tex]

[tex][8, 8.001]: \, \square[/tex]



Answer :

To determine the average velocity of the arrow over given time intervals, we use the formula for average velocity, which is the change in height divided by the change in time:

[tex]\[ \text{Average Velocity} = \frac{h(b) - h(a)}{b - a} \][/tex]

where [tex]\( h(t) = 62t - 0.83t^2 \)[/tex] is the height function. Now, let's calculate the average velocity for each of the given time intervals.

### Interval [tex]\([8, 9]\)[/tex]
1. Calculate [tex]\( h(9) \)[/tex] and [tex]\( h(8) \)[/tex]:
[tex]\[ h(9) = 62 \times 9 - 0.83 \times 9^2 \][/tex]
[tex]\[ h(8) = 62 \times 8 - 0.83 \times 8^2 \][/tex]
2. Compute the average velocity:
[tex]\[ \text{Average Velocity} = \frac{h(9) - h(8)}{9 - 8} \approx 47.89 \][/tex]

### Interval [tex]\([8, 8.5]\)[/tex]
1. Calculate [tex]\( h(8.5) \)[/tex] and [tex]\( h(8) \)[/tex]:
[tex]\[ h(8.5) = 62 \times 8.5 - 0.83 \times 8.5^2 \][/tex]
[tex]\[ h(8) = 62 \times 8 - 0.83 \times 8^2 \][/tex]
2. Compute the average velocity:
[tex]\[ \text{Average Velocity} = \frac{h(8.5) - h(8)}{8.5 - 8} \approx 48.305 \][/tex]

### Interval [tex]\([8, 8.1]\)[/tex]
1. Calculate [tex]\( h(8.1) \)[/tex] and [tex]\( h(8) \)[/tex]:
[tex]\[ h(8.1) = 62 \times 8.1 - 0.83 \times 8.1^2 \][/tex]
[tex]\[ h(8) = 62 \times 8 - 0.83 \times 8^2 \][/tex]
2. Compute the average velocity:
[tex]\[ \text{Average Velocity} = \frac{h(8.1) - h(8)}{8.1 - 8} \approx 48.637 \][/tex]

### Interval [tex]\([8, 8.01]\)[/tex]
1. Calculate [tex]\( h(8.01) \)[/tex] and [tex]\( h(8) \)[/tex]:
[tex]\[ h(8.01) = 62 \times 8.01 - 0.83 \times 8.01^2 \][/tex]
[tex]\[ h(8) = 62 \times 8 - 0.83 \times 8^2 \][/tex]
2. Compute the average velocity:
[tex]\[ \text{Average Velocity} = \frac{h(8.01) - h(8)}{8.01 - 8} \approx 48.7117 \][/tex]

### Interval [tex]\([8, 8.001]\)[/tex]
1. Calculate [tex]\( h(8.001) \)[/tex] and [tex]\( h(8) \)[/tex]:
[tex]\[ h(8.001) = 62 \times 8.001 - 0.83 \times 8.001^2 \][/tex]
[tex]\[ h(8) = 62 \times 8 - 0.83 \times 8^2 \][/tex]
2. Compute the average velocity:
[tex]\[ \text{Average Velocity} = \frac{h(8.001) - h(8)}{8.001 - 8} \approx 48.7192 \][/tex]

The average velocities for the respective intervals are:

[tex]\[ [8, 9]: \approx 47.89 \][/tex]
[tex]\[ [8, 8.5]: \approx 48.305 \][/tex]
[tex]\[ [8, 8.1]: \approx 48.637 \][/tex]
[tex]\[ [8, 8.01]: \approx 48.7117 \][/tex]
[tex]\[ [8, 8.001]: \approx 48.7192 \][/tex]