2. Which of the following is equivalent to [tex]10 \times 10^4 \times 10^3 \times 10^{-5}[/tex]?

A. [tex]10^3[/tex]
B. [tex]10^7[/tex]
C. [tex]10^{13}[/tex]
D. [tex]10^2[/tex]



Answer :

To determine which expression is equivalent to [tex]\(10 \times 10^4 \times 10^3 \times 10^{-5}\)[/tex], let's go through the problem step by step, applying the properties of exponents.

### Step 1: Identify the base
The base for all the exponential terms is 10.

### Step 2: Simplify the expression using exponent rules

The expression given is:
[tex]\[ 10 \times 10^4 \times 10^3 \times 10^{-5} \][/tex]

### Step 3: Apply the exponent addition rule
When multiplying numbers with the same base, you add their exponents. For a base [tex]\(10\)[/tex], we can simplify the multiplication as follows:

[tex]\[ 10^1 \times 10^4 \times 10^3 \times 10^{-5} \][/tex]

The exponents can be added together:
[tex]\[ 1 + 4 + 3 + (-5) \][/tex]

### Step 4: Calculate the sum of exponents
Perform the addition within the exponents:
[tex]\[ 1 + 4 + 3 + (-5) = 1 + 4 + 3 - 5 = 8 - 5 = 3 \][/tex]

### Step 5: Write the equivalent exponential expression

After summing the exponents, we get:
[tex]\[ 10^{3} \][/tex]

So, the expression [tex]\(10 \times 10^4 \times 10^3 \times 10^{-5}\)[/tex] is equivalent to [tex]\(10^{3}\)[/tex].

Thus, the correct answer is:
[tex]\[ \boxed{10^3} \][/tex]