The point of intersection of the lines is [tex]\((2,2)\)[/tex].

Enter the values to check the apparent solution:
[tex]\[
\begin{array}{cc}
x + 3y = 8 & x - 4y = -6 \\
2 + 3 \cdot 2 \stackrel{?}{=} 8 & 2 - 4 \cdot 2 \stackrel{?}{=}-6 \\
2 + 6 \stackrel{?}{=} 8 & 2 - 8 \stackrel{?}{=}-6 \\
8 \stackrel{?}{=} 8 & -6 \stackrel{?}{=}-6
\end{array}
\][/tex]



Answer :

Let's check whether the point (2, 2) is a solution for the given system of linear equations:

The system we are dealing with is:
[tex]\[ \begin{aligned} & x + 3y = 8 \\ & x - 4y = -6 \end{aligned} \][/tex]

Step-by-step verification:

1. Substituting [tex]\( x = 2 \)[/tex] and [tex]\( y = 2 \)[/tex] into the first equation [tex]\( x + 3y = 8 \)[/tex]:
[tex]\[ 2 + 3(2) = 2 + 6 = 8 \][/tex]

So, for [tex]\( x + 3y \)[/tex], we get 8.

2. Substituting [tex]\( x = 2 \)[/tex] and [tex]\( y = 2 \)[/tex] into the second equation [tex]\( x - 4y = -6 \)[/tex]:
[tex]\[ 2 - 4(2) = 2 - 8 = -6 \][/tex]

So, for [tex]\( x - 4y \)[/tex], we get -6.

The step-by-step process verifies that both equations are satisfied when [tex]\( x = 2 \)[/tex] and [tex]\( y = 2 \)[/tex].

Therefore, the correct values to complete the table are:
[tex]\[ \begin{array}{cc} x+3 y=8 & x-4 y=-6 \\ +3 \cdot (2) \stackrel{?}{=} 8 & -4 \cdot (2) \stackrel{?}{=}-6 \\ 2+6 \stackrel{?}{=} 8 & 2-8 \stackrel{?}{=}-6 \\ 8 \stackrel{?}{=} 8 & -6 \quad (correct) \end{array} \][/tex]

Thus, the apparent solution [tex]\( (2, 2) \)[/tex] is indeed correct.