Which of the following represents [tex]\frac{1}{16} \times \frac{1}{8}[/tex] using exponential notation?

A. [tex]\left(2^{-4}\right)\left(2^{-3}\right)[/tex]

B. [tex]\left(2^{-4}\right)\left(2^3\right)[/tex]

C. [tex]\left(2^4\right)\left(2^3\right)[/tex]

D. [tex]\left(2^4\right)\left(2^{-3}\right)[/tex]



Answer :

To solve the problem of representing [tex]\(\frac{1}{16} \times \frac{1}{8}\)[/tex] using exponential notation, let's break it down step-by-step.

First, let's express each fraction in terms of powers of 2:

1. [tex]\(\frac{1}{16}\)[/tex]:

[tex]\[ \frac{1}{16} = \frac{1}{2^4} = 2^{-4} \][/tex]

2. [tex]\(\frac{1}{8}\)[/tex]:

[tex]\[ \frac{1}{8} = \frac{1}{2^3} = 2^{-3} \][/tex]

Now, we'll multiply the two fractions:

[tex]\[ \frac{1}{16} \times \frac{1}{8} = 2^{-4} \times 2^{-3} \][/tex]

When multiplying expressions with the same base, we add the exponents:

[tex]\[ 2^{-4} \times 2^{-3} = 2^{(-4) + (-3)} = 2^{-7} \][/tex]

Hence, the correct exponential notation for [tex]\(\frac{1}{16} \times \frac{1}{8}\)[/tex] is [tex]\(\left(2^{-4}\right)\left(2^{-3}\right)\)[/tex].

So, the correct answer is:

[tex]\(\left(2^{-4}\right)\left(2^{-3}\right)\)[/tex]