Approximate Distances from the Sun

\begin{tabular}{|c|c|}
\hline
To & Distance (miles) \\
\hline
Earth & [tex]$0.3 \times 10^7$[/tex] \\
\hline
Mars & [tex]$1.42 \times 10^7$[/tex] \\
\hline
Jupiter & [tex]$4.84 \times 10^7$[/tex] \\
\hline
\end{tabular}

The speed of light is approximately [tex]$186 \times 10^3$[/tex] miles per second.

1. Find the amount of time it takes for a beam of light to travel from the Sun to Earth. Show all work and express your answer in minutes.

2. Explain or show how to use the numbers in scientific notation to calculate the difference in the distance from Jupiter to the Sun and the distance from Mars to the Sun. Then find the difference and express your answer in scientific notation.

3. Explain or show how to find the number of miles light will travel in [tex]$\frac{1}{2}$[/tex] minute.



Answer :

### 1. Time for Light from the Sun to Reach Earth

The distance from the Sun to Earth is given as [tex]\(0.3 \times 10^7\)[/tex] miles. The speed of light is given as [tex]\(186 \times 10^3\)[/tex] miles per second.

To find the time it takes for light to travel from the Sun to Earth, we use the formula:
[tex]\[ \text{Time} = \frac{\text{Distance}}{\text{Speed}} \][/tex]

First, calculate the time in seconds:
[tex]\[ \text{Time in seconds} = \frac{0.3 \times 10^7 \text{ miles}}{186 \times 10^3 \text{ miles/second}} \][/tex]

Performing the division:
[tex]\[ \text{Time in seconds} = \frac{3000000}{186000} \approx 16.129032258064516 \text{ seconds} \][/tex]

To convert the time from seconds to minutes, we divide by 60:
[tex]\[ \text{Time in minutes} = \frac{16.129032258064516 \text{ seconds}}{60} \approx 0.26881720430107525 \text{ minutes} \][/tex]

So, it takes approximately 16.129 seconds or 0.269 minutes for light to travel from the Sun to Earth.

### 2. Difference in Distance Between Jupiter and Mars

The distance from the Sun to Jupiter is [tex]\(4.84 \times 10^7\)[/tex] miles, and the distance from the Sun to Mars is [tex]\(1.42 \times 10^7\)[/tex] miles.

To find the difference in their distances, we subtract the distance to Mars from the distance to Jupiter:
[tex]\[ \text{Difference} = (4.84 \times 10^7) - (1.42 \times 10^7) \][/tex]

Calculate the difference in distance:
[tex]\[ \text{Difference} = 4.84 \times 10^7 - 1.42 \times 10^7 \][/tex]
[tex]\[ \text{Difference} = (4.84 - 1.42) \times 10^7 \][/tex]
[tex]\[ \text{Difference} = 3.42 \times 10^7 \text{ miles} \][/tex]

So, the difference in distance between Jupiter and Mars is 34,200,000 miles or 3.42 × 10^7 miles expressed in scientific notation.

### 3. Distance Light Travels in 0.5 Minutes

Light travels at a speed of [tex]\(186 \times 10^3\)[/tex] miles per second. We need to calculate the distance light travels in [tex]\(\frac{1}{2}\)[/tex] minute, or 30 seconds.

First, convert 0.5 minutes to seconds:
[tex]\[ 0.5 \text{ minutes} \times 60 \text{ seconds/minute} = 30 \text{ seconds} \][/tex]

To find the distance light travels in 30 seconds, use the formula:
[tex]\[ \text{Distance} = \text{Speed} \times \text{Time} \][/tex]

Substituting the values:
[tex]\[ \text{Distance} = 186 \times 10^3 \text{ miles/second} \times 30 \text{ seconds} \][/tex]

Calculate the distance:
[tex]\[ \text{Distance} = 186000 \times 30 = 5580000 \text{ miles} \][/tex]

So, light will travel 5,580,000 miles in [tex]\(\frac{1}{2}\)[/tex] minute.