Based on the table below,
[tex]\[
\begin{tabular}{|c|r|r|r|r|r|r|r|r|r|r|}
\hline
$x$ & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
$f(x)$ & 96 & 75 & 46 & 59 & 13 & 79 & 4 & 28 & 1 & 11 \\
\hline
\end{tabular}
\][/tex]

Evaluate [tex]\( f(1) \)[/tex]:
[tex]\[ f(1) = 75 \][/tex]

Solve [tex]\( f(x) = 4 \)[/tex]:
[tex]\[ x = \][/tex]



Answer :

Let's analyze the table and address the questions step-by-step.

### Step 1: Evaluate [tex]\( f(1) \)[/tex]
To evaluate [tex]\( f(1) \)[/tex], we need to find the value in the table where [tex]\( x = 1 \)[/tex]. Looking at the table:

[tex]\[ \begin{array}{|c|r|r|r|r|r|r|r|r|r|r|} \hline x & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline f(x) & 96 & 75 & 46 & 59 & 13 & 79 & 4 & 28 & 1 & 11 \\ \hline \end{array} \][/tex]

For [tex]\( x = 1 \)[/tex], the corresponding [tex]\( f(x) \)[/tex] value is [tex]\( 75 \)[/tex]. Therefore:
[tex]\[ f(1) = 75 \][/tex]

### Step 2: Solve [tex]\( f(x) = 4 \)[/tex]
To solve [tex]\( f(x) = 4 \)[/tex], we need to look for the value of [tex]\( x \)[/tex] where [tex]\( f(x) = 4 \)[/tex] in the table. Scanning through the [tex]\( f(x) \)[/tex] values:

[tex]\[ \begin{array}{|c|r|r|r|r|r|r|r|r|r|r|} \hline x & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline f(x) & 96 & 75 & 46 & 59 & 13 & 79 & 4 & 28 & 1 & 11 \\ \hline \end{array} \][/tex]

We see that [tex]\( f(x) = 4 \)[/tex] when [tex]\( x = 6 \)[/tex]. Therefore:
[tex]\[ x = 6 \][/tex]

### Summary

- The value of [tex]\( f(1) \)[/tex] is [tex]\( 75 \)[/tex].
- The solution to [tex]\( f(x) = 4 \)[/tex] is [tex]\( x = 6 \)[/tex].

So, the final results are:
[tex]\[ f(1) = 75 \quad \text{and} \quad x = 6 \text{ when } f(x) = 4. \][/tex]