17. There are 15 white and 25 black identical balls in a box. If a ball is selected at random from the box, find the probability that it is white.

A. [tex]$\frac{3}{8}$[/tex]
B. [tex]$\frac{1}{15}$[/tex]
C. [tex]$\frac{5}{8}$[/tex]
D. [tex]$\frac{1}{25}$[/tex]

18. Given the vectors [tex]$m =\binom{5}{-1}$[/tex] and [tex]$n =\binom{-4}{2}$[/tex], find [tex]$2m + n$[/tex].

A. [tex]$\binom{0}{6}$[/tex]
B. [tex]$\binom{-6}{0}$[/tex]
C. [tex]$\binom{0}{-6}$[/tex]
D. [tex]$\binom{6}{0}$[/tex]

19. If the gradient of a straight line is zero, then the line

A. falls to the right.
B. is horizontal.
C. rises to the right.
D. is vertical.

20. Find the image of the point [tex]$(-3, 5)$[/tex] when it is rotated through [tex]$360^{\circ}$[/tex] about the origin.

A. [tex]$(-5, 3)$[/tex]
B. [tex]$(-3, 5)$[/tex]
C. [tex]$(-3, -5)$[/tex]
D. [tex]$(5, -3)$[/tex]



Answer :

Let’s go through each question one by one:

### Question 17:
There are 15 white and 25 black identical balls in a box. To find the probability that a ball selected at random from the box is white, we follow these steps:

1. Count the total number of balls:
The total number of balls is [tex]\(15 + 25 = 40\)[/tex].

2. Determine the number of favorable outcomes:
The favorable outcomes are the selections of a white ball. There are 15 white balls.

3. Calculate the probability of selecting a white ball:
The probability of an event is given by the formula:
[tex]\[ P(A) = \frac{\text{Number of favorable outcomes}}{\text{Total number of outcomes}} \][/tex]
Here, the probability that the ball is white is:
[tex]\[ P(\text{White}) = \frac{15}{40} = \frac{3}{8} \][/tex]

Therefore, the answer is:
[tex]\[ \boxed{\frac{3}{8}} \][/tex]

### Question 18:
Given the vectors [tex]\( m = \begin{pmatrix} 5 \\ -1 \end{pmatrix} \)[/tex] and [tex]\( n = \begin{pmatrix} -4 \\ 2 \end{pmatrix} \)[/tex], we need to find [tex]\( 2m + n \)[/tex].

1. Calculate [tex]\( 2m \)[/tex]:
[tex]\[ 2m = 2 \begin{pmatrix} 5 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \times 5 \\ 2 \times -1 \end{pmatrix} = \begin{pmatrix} 10 \\ -2 \end{pmatrix} \][/tex]

2. Add vector [tex]\( n \)[/tex] to [tex]\( 2m \)[/tex]:
[tex]\[ 2m + n = \begin{pmatrix} 10 \\ -2 \end{pmatrix} + \begin{pmatrix} -4 \\ 2 \end{pmatrix} = \begin{pmatrix} 10 + (-4) \\ -2 + 2 \end{pmatrix} = \begin{pmatrix} 6 \\ 0 \end{pmatrix} \][/tex]

Therefore, the answer is:
[tex]\[ \boxed{\begin{pmatrix} 6 \\ 0 \end{pmatrix}} \][/tex]

### Question 19:
If the gradient (slope) of a straight line is zero, then the line is:

- The gradient of a line indicates its steepness. A gradient of zero means no steepness.

- This implies that the line is perfectly flat and does not rise or fall as you move along it.

- Such a line is characteristic of a horizontal line, where [tex]\( y \)[/tex] remains constant for any [tex]\( x \)[/tex].

Therefore, the answer is:
[tex]\[ \boxed{\text{B. is horizontal}} \][/tex]

### Question 20:
To find the image of the point [tex]\( (-3, 5) \)[/tex] when it is rotated through [tex]\( 360^\circ \)[/tex] about the origin, we analyze the transformation:

- A rotation of [tex]\( 360^\circ \)[/tex] brings the point back to its original position because one complete rotation returns all points in a plane to their starting positions relative to the origin.

Therefore, the image of the point [tex]\( (-3, 5) \)[/tex] remains [tex]\( (-3, 5) \)[/tex].

The answer is:
[tex]\[ \boxed{\text{B. } (-3, 5)} \][/tex]