Does this table represent a function? Why or why not?

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
2 & 1 \\
\hline
3 & 4 \\
\hline
4 & 4 \\
\hline
5 & 2 \\
\hline
5 & 5 \\
\hline
\end{tabular}

A. Yes, because every [tex]$x$[/tex]-value corresponds to exactly one [tex]$y$[/tex]-value.

B. Yes, because there is the same number of [tex]$x$[/tex]-values as [tex]$y$[/tex]-values.

C. No, because one [tex]$x$[/tex]-value corresponds to two different [tex]$y$[/tex]-values.

D. No, because two of the [tex]$y$[/tex]-values are the same.



Answer :

To determine whether the given table represents a function, we need to examine the relationship between the [tex]\(x\)[/tex]-values (inputs) and [tex]\(y\)[/tex]-values (outputs). Specifically, a set of ordered pairs [tex]\((x, y)\)[/tex] represents a function if and only if each [tex]\(x\)[/tex]-value is associated with exactly one [tex]\(y\)[/tex]-value.

Let's analyze the table:

[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $y$ \\ \hline 2 & 1 \\ \hline 3 & 4 \\ \hline 4 & 4 \\ \hline 5 & 2 \\ \hline 5 & 5 \\ \hline \end{tabular} \][/tex]

We need to check if there is any [tex]\(x\)[/tex]-value that corresponds to more than one [tex]\(y\)[/tex]-value:
- For [tex]\(x = 2\)[/tex], we have [tex]\(y = 1\)[/tex].
- For [tex]\(x = 3\)[/tex], we have [tex]\(y = 4\)[/tex].
- For [tex]\(x = 4\)[/tex], we have [tex]\(y = 4\)[/tex].
- For [tex]\(x = 5\)[/tex], we encounter a problem: [tex]\(x = 5\)[/tex] corresponds to both [tex]\(y = 2\)[/tex] and [tex]\(y = 5\)[/tex].

Since the [tex]\(x\)[/tex]-value [tex]\(5\)[/tex] corresponds to more than one [tex]\(y\)[/tex]-value ([tex]\(2\)[/tex] and [tex]\(5\)[/tex]), the table does not represent a function. This means that the criterion for a function (each [tex]\(x\)[/tex]-value corresponds to exactly one [tex]\(y\)[/tex]-value) is not met.

Therefore, the correct answer is:
C. No, because one [tex]\(x\)[/tex]-value corresponds to two different [tex]\(y\)[/tex]-values.