Drag the tiles to the correct boxes to complete the pairs.

Consider the functions below:
[tex]\[
\begin{array}{l}
f(x) = x^2 - 6x - 27 \\
g(x) = x - 9
\end{array}
\][/tex]

Match the expressions to the correct function combinations:
[tex]\[
(f \cdot g)(x) \quad \left(\frac{f}{g}\right)(x) \quad (f - g)(x) \quad (f + g)(x)
\][/tex]

[tex]\[
x^2 - 7x - 18
\][/tex]
[tex]\[
\square
\][/tex]

[tex]\[
x + 3
\][/tex]
[tex]\[
\square
\][/tex]

[tex]\[
\square
\][/tex]
[tex]\[
\square
\][/tex]

[tex]\[
x^3 - 15x^2 + 27x + 243
\][/tex]
[tex]\[
\square
\][/tex]



Answer :

Let's carefully analyze how each function combination relates to the given expressions using the numerical results provided.

1. Sum of the functions (f+g)(x):

According to the results:

[tex]\[(f + g)(3) = -42\][/tex]

2. Difference of the functions (f-g)(x):

According to the results:

[tex]\[(f - g)(3) = -30\][/tex]

3. Product of the functions (f·g)(x):

According to the results:

[tex]\[(f·g)(3) = 216\][/tex]

4. Quotient of the functions [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex]:

According to the results:

[tex]\[\left(\frac{f}{g}\right)(3) = 6.0\][/tex]

Given the expressions:

1. [tex]\(x^2-7x-18\)[/tex]
2. [tex]\(x+3\)[/tex]
3. [tex]\(x^3-15 x^2 + 27x + 243\)[/tex]

Let's match them one by one:

- For [tex]\(x^2-7x-18\)[/tex], it seems to be a combination of a quadratic functions, suggesting sums or differences.

- For [tex]\(x+3\)[/tex], which is linear, suggesting simplified quotient or difference.

- For [tex]\(x^3-15x^2+27x+243\)[/tex], this clearly looks like a polynomial of higher degree, typical for products.

So we conclude:

- [tex]\(x^2-7 x-18\)[/tex] matches with [tex]\((f+g)(x)\)[/tex] since
- [tex]\(x+3\)[/tex] matches with [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex]
- [tex]\(x^3-15x^2+27x+243\)[/tex] matches with [tex]\((f·g)(x)\)[/tex]

Let's drag and match the correct boxes:

- [tex]\( (f+g)(x) \)[/tex] ⟶ [tex]\( x^2-7 x-18 \)[/tex]
- [tex]\( (f-g)(x) \)[/tex] ⟶
- [tex]\( (f·g)(x) \)[/tex] ⟶ [tex]\( x^3-15 x^2 + 27x + 243\)[/tex]
- [tex]\( \left(\frac{f}{g}\right)(x) \)[/tex] ⟶ [tex]\( x+3 \)[/tex]

Hence:

- [tex]\((f+g)(x) \quad x^2-7 x-18\)[/tex]
- [tex]\( (f-g)(x) \)[/tex]
- [tex]\((f·g)(x) \quad x^3-15 x^2 + 27x + 243\)[/tex]
- [tex]\( \left(\frac{f}{g}\right)(x) \quad x+3\)[/tex]