Answer :
To determine the rate of volume change for Tube 2, we can apply the given formula:
[tex]\[ \text{Rate of volume change} \left( \frac{ \text{mL} }{ \text{hr} } \right) = \frac{\text { final volume } ( \text{mL} ) - \text { initial volume } ( \text{mL} ) }{\text{ Time } ( \text{min} )} \times 60 \left( \frac{ \text{min} }{ \text{hr} } \right) \][/tex]
Looking at the values from the table for Tube 2:
- Initial volume at 0 minutes: [tex]\( 3 \)[/tex] mL
- Final volume at 20 minutes: [tex]\( 1.6 \)[/tex] mL
Now, we plug these values into the formula:
[tex]\[ \text{Rate of volume change} \left( \frac{ \text{mL} }{ \text{hr} } \right) = \frac{ 1.6 - 3 }{ 20 } \times 60 \][/tex]
Next, calculate the difference in volume and the time coefficient:
1. Calculate the difference in volume:
[tex]\[ 1.6 - 3 = -1.4 \text{ mL} \][/tex]
2. Calculate the time coefficient:
[tex]\[ \frac{ 60 }{ 20 } = 3 \][/tex]
Finally, multiply the change in volume by the time coefficient:
[tex]\[ -1.4 \times 3 = -4.2 \][/tex]
So, the rate of volume change for Tube 2 is [tex]\( -4.2 \)[/tex] mL/hr.
[tex]\[ \text{Rate of volume change} \left( \frac{ \text{mL} }{ \text{hr} } \right) = \frac{\text { final volume } ( \text{mL} ) - \text { initial volume } ( \text{mL} ) }{\text{ Time } ( \text{min} )} \times 60 \left( \frac{ \text{min} }{ \text{hr} } \right) \][/tex]
Looking at the values from the table for Tube 2:
- Initial volume at 0 minutes: [tex]\( 3 \)[/tex] mL
- Final volume at 20 minutes: [tex]\( 1.6 \)[/tex] mL
Now, we plug these values into the formula:
[tex]\[ \text{Rate of volume change} \left( \frac{ \text{mL} }{ \text{hr} } \right) = \frac{ 1.6 - 3 }{ 20 } \times 60 \][/tex]
Next, calculate the difference in volume and the time coefficient:
1. Calculate the difference in volume:
[tex]\[ 1.6 - 3 = -1.4 \text{ mL} \][/tex]
2. Calculate the time coefficient:
[tex]\[ \frac{ 60 }{ 20 } = 3 \][/tex]
Finally, multiply the change in volume by the time coefficient:
[tex]\[ -1.4 \times 3 = -4.2 \][/tex]
So, the rate of volume change for Tube 2 is [tex]\( -4.2 \)[/tex] mL/hr.