Was your calculation for the rate of change correct? Hint: the rate can be negative.

\begin{tabular}{|c|c|c|}
\hline Time (min) & \begin{tabular}{l}
Tube 1 \\
White Light Volume (mL)
\end{tabular} & \begin{tabular}{l}
Tube 2 \\
Covered Volume (mL)
\end{tabular} \\
\hline 0 & 3 & 3 \\
\hline 5 & 4.3 & 2.9 \\
\hline 10 & 5.5 & 2.4 \\
\hline 15 & 6.5 & 2 \\
\hline 20 & 7.9 & 1.6 \\
\hline Rate of volume change [tex]$(mL/hr)$[/tex] & -1.1 & \\
\hline
\end{tabular}

Rate of volume change [tex]$\left(\frac{mL}{hr}\right) = \frac{\text{final volume} (mL) - \text{initial volume} (mL)}{\text{Time} (min)} \times 60\left(\frac{min}{hr}\right)$[/tex]



Answer :

To determine the rate of volume change for Tube 2, we can apply the given formula:

[tex]\[ \text{Rate of volume change} \left( \frac{ \text{mL} }{ \text{hr} } \right) = \frac{\text { final volume } ( \text{mL} ) - \text { initial volume } ( \text{mL} ) }{\text{ Time } ( \text{min} )} \times 60 \left( \frac{ \text{min} }{ \text{hr} } \right) \][/tex]

Looking at the values from the table for Tube 2:

- Initial volume at 0 minutes: [tex]\( 3 \)[/tex] mL
- Final volume at 20 minutes: [tex]\( 1.6 \)[/tex] mL

Now, we plug these values into the formula:

[tex]\[ \text{Rate of volume change} \left( \frac{ \text{mL} }{ \text{hr} } \right) = \frac{ 1.6 - 3 }{ 20 } \times 60 \][/tex]

Next, calculate the difference in volume and the time coefficient:

1. Calculate the difference in volume:
[tex]\[ 1.6 - 3 = -1.4 \text{ mL} \][/tex]

2. Calculate the time coefficient:
[tex]\[ \frac{ 60 }{ 20 } = 3 \][/tex]

Finally, multiply the change in volume by the time coefficient:

[tex]\[ -1.4 \times 3 = -4.2 \][/tex]

So, the rate of volume change for Tube 2 is [tex]\( -4.2 \)[/tex] mL/hr.