Find the domain of the following rational function.

[tex]\[ R(x) = \frac{8\left(x^2 - x - 56\right)}{9\left(x^2 - 64\right)} \][/tex]

Select the correct choice below and fill in any answer boxes within your choice.

A. The domain of [tex]\( R(x) \)[/tex] is [tex]\(\{ x \mid x \neq \square \}\)[/tex].
(Type an inequality in the form [tex]\( x \neq \)[/tex]. Use integers or fractions for any numbers in the expression. Use a comma to separate answers.)

B. The domain of [tex]\( R(x) \)[/tex] is the set of all real numbers.



Answer :

To find the domain of the rational function [tex]\( R(x) = \frac{8(x^2 - x - 56)}{9(x^2 - 64)} \)[/tex], we need to determine the values of [tex]\( x \)[/tex] for which the function is defined. Specifically, we need to find the values of [tex]\( x \)[/tex] that do not make the denominator equal to zero because division by zero is undefined.

First, consider the denominator of the rational function:

[tex]\[ 9(x^2 - 64) \][/tex]

We need to find the values of [tex]\( x \)[/tex] that make this expression equal to zero:

[tex]\[ 9(x^2 - 64) = 0 \][/tex]

To solve this equation, we start by simplifying it:

[tex]\[ x^2 - 64 = 0 \][/tex]

Next, we factor the quadratic expression:

[tex]\[ (x - 8)(x + 8) = 0 \][/tex]

Setting each factor equal to zero gives us:

[tex]\[ x - 8 = 0 \quad \text{or} \quad x + 8 = 0 \][/tex]
[tex]\[ x = 8 \quad \text{or} \quad x = -8 \][/tex]

Thus, the values of [tex]\( x \)[/tex] that make the denominator zero are [tex]\( x = 8 \)[/tex] and [tex]\( x = -8 \)[/tex]. These values must be excluded from the domain of [tex]\( R(x) \)[/tex].

The domain of [tex]\( R(x) \)[/tex] is all real numbers except where the denominator is zero. Therefore, we exclude [tex]\( x = 8 \)[/tex] and [tex]\( x = -8 \)[/tex].

In set notation, the domain of [tex]\( R(x) \)[/tex] can be expressed as:

[tex]\[ \{ x \mid x \neq 8 \text{ and } x \neq -8 \} \][/tex]

So, the correct choice is:

A. The domain of [tex]\( R(x) \)[/tex] is [tex]\(\{ x \mid x \neq -8, x \neq 8 \}\)[/tex].