Write the rational number whose numerator and denominator are given below:

(i) Numerator [tex]$=3$[/tex], Denominator [tex]$=-7$[/tex]
(ii) Denominator [tex]$=-4$[/tex], Numerator [tex]$=-3$[/tex]
(iii) Numerator [tex]$=15-7$[/tex], Denominator [tex]$=13-6$[/tex]
(iv) Numerator [tex]$=7+6$[/tex], Denominator [tex]$=17 \times (-2)$[/tex]



Answer :

To find the rational numbers based on the given numerators and denominators, we will perform the division for each pair of numerator and denominator.

(i) Numerator = 3, Denominator = -7:

We perform the division:
[tex]\[ \frac{3}{-7} \][/tex]

This simplifies to:
[tex]\[ -0.42857142857142855 \][/tex]

So, the rational number for the given values is:
[tex]\[ -0.42857142857142855 \][/tex]

(ii) Denominator = -4, Numerator = -3:

We perform the division:
[tex]\[ \frac{-3}{-4} \][/tex]

Since dividing two negative numbers results in a positive number:
[tex]\[ 0.75 \][/tex]

So, the rational number for the given values is:
[tex]\[ 0.75 \][/tex]

(iii) Numerator = 15 - 7, Denominator = 13 - 6:

First, we calculate the numerator and denominator separately:
[tex]\[ 15 - 7 = 8 \][/tex]
[tex]\[ 13 - 6 = 7 \][/tex]

We then perform the division:
[tex]\[ \frac{8}{7} \][/tex]

Simplifying this, we get:
[tex]\[ 1.1428571428571428 \][/tex]

So, the rational number for the given values is:
[tex]\[ 1.1428571428571428 \][/tex]

(iv) Numerator = 7 + 6, Denominator = 17 \times (-2):

First, we calculate the numerator and denominator separately:
[tex]\[ 7 + 6 = 13 \][/tex]
[tex]\[ 17 \times (-2) = -34 \][/tex]

We then perform the division:
[tex]\[ \frac{13}{-34} \][/tex]

Simplifying this, we get:
[tex]\[ -0.38235294117647056 \][/tex]

So, the rational number for the given values is:
[tex]\[ -0.38235294117647056 \][/tex]

To summarize, the rational numbers are:

(i) [tex]\(-0.42857142857142855\)[/tex]

(ii) [tex]\(0.75\)[/tex]

(iii) [tex]\(1.1428571428571428\)[/tex]

(iv) [tex]\(-0.38235294117647056\)[/tex]