Answer :

To solve this problem, we need to find the [tex]\(12^\text{th}\)[/tex] term of a geometric sequence (GS) where the [tex]\(13^\text{th}\)[/tex] term is given as 625 and the common ratio is 5.

In a geometric sequence, the [tex]\(n^\text{th}\)[/tex] term can be found using the formula:
[tex]\[ a_n = a \cdot r^{n-1} \][/tex]
where:
- [tex]\(a_n\)[/tex] is the [tex]\(n^\text{th}\)[/tex] term.
- [tex]\(a\)[/tex] is the first term.
- [tex]\(r\)[/tex] is the common ratio.
- [tex]\(n\)[/tex] is the term number.

Given:
- [tex]\(a_{13} = 625\)[/tex]
- [tex]\(r = 5\)[/tex]

First, we need to find the first term [tex]\(a\)[/tex] of the geometric sequence.

We know:
[tex]\[ a_{13} = a \cdot r^{12} \][/tex]

Substitute the given values:
[tex]\[ 625 = a \cdot 5^{12} \][/tex]

To find [tex]\(a\)[/tex], we solve for it by dividing both sides of the equation by [tex]\(5^{12}\)[/tex]:
[tex]\[ a = \frac{625}{5^{12}} \][/tex]

Now that we have the first term [tex]\(a\)[/tex], we can use it to find the [tex]\(12^\text{th}\)[/tex] term [tex]\(a_{12}\)[/tex].

Using the formula:
[tex]\[ a_{12} = a \cdot r^{11} \][/tex]

Substitute [tex]\(a\)[/tex] and [tex]\(r\)[/tex] into the formula:
[tex]\[ a_{12} = \left(\frac{625}{5^{12}}\right) \cdot 5^{11} \][/tex]

Simplify the expression:
[tex]\[ a_{12} = \frac{625 \cdot 5^{11}}{5^{12}} \][/tex]

[tex]\[ a_{12} = \frac{625}{5} \][/tex]

[tex]\[ a_{12} = 125 \][/tex]

Therefore, the [tex]\(12^\text{th}\)[/tex] term of the geometric sequence is [tex]\(125\)[/tex].