Select the correct answer.

What is [tex]$\sqrt{200}$[/tex] in simplest form?

A. [tex]$2 \sqrt{10}$[/tex]
B. [tex][tex]$10 \sqrt{2}$[/tex][/tex]
C. [tex]$100 \sqrt{2}$[/tex]
D. [tex]$20 \sqrt{10}$[/tex]



Answer :

To simplify [tex]\(\sqrt{200}\)[/tex], we need to find the prime factorization of 200 and then simplify the square root based on those factors.

1. Prime Factorization:
- The number 200 can be factored as follows:
[tex]\[ 200 = 2 \times 100 = 2 \times 2 \times 50 = 2 \times 2 \times 2 \times 25 = 2^3 \times 5^2 \][/tex]

2. Simplifying the Square Root:
- Using the property of square roots, [tex]\(\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}\)[/tex], we can rewrite the square root of 200:
[tex]\[ \sqrt{200} = \sqrt{2^3 \times 5^2} \][/tex]

- Separate the perfect squares from the factors:
[tex]\[ \sqrt{200} = \sqrt{2^2 \times 2 \times 5^2} = \sqrt{2^2} \times \sqrt{5^2} \times \sqrt{2} \][/tex]

- Take the square root of the perfect squares:
[tex]\[ \sqrt{200} = 2 \times 5 \times \sqrt{2} = 10 \sqrt{2} \][/tex]

Thus, [tex]\(\sqrt{200}\)[/tex] in simplest form is [tex]\(10 \sqrt{2}\)[/tex].

Therefore, the correct answer is:
B. [tex]\(10 \sqrt{2}\)[/tex]