Sure, let's make [tex]\( x \)[/tex] the subject of the equation [tex]\( m = n + \frac{x}{p} \)[/tex]. Here's a step-by-step solution:
1. Write down the equation:
[tex]\[
m = n + \frac{x}{p}
\][/tex]
2. Isolate the term containing [tex]\( x \)[/tex]:
Subtract [tex]\( n \)[/tex] from both sides of the equation:
[tex]\[
m - n = \frac{x}{p}
\][/tex]
3. Solve for [tex]\( x \)[/tex]:
Multiply both sides of the equation by [tex]\( p \)[/tex] to get rid of the denominator:
[tex]\[
p(m - n) = x
\][/tex]
4. Rearrange the equation:
Rewrite the equation so [tex]\( x \)[/tex] is clearly the subject:
[tex]\[
x = p(m - n)
\][/tex]
So, the value of [tex]\( x \)[/tex] in terms of [tex]\( m \)[/tex], [tex]\( n \)[/tex], and [tex]\( p \)[/tex] is:
[tex]\[
x = p(m - n)
\][/tex]