Answer :
Certainly! Let's solve the equation [tex]\( q - 2p = p + 4 \)[/tex] for [tex]\( p \)[/tex] step-by-step.
1. Rewrite the given equation:
[tex]\[ q - 2p = p + 4 \][/tex]
2. Move all terms involving [tex]\( p \)[/tex] to one side and constant terms to the other side.
- First, subtract [tex]\( p \)[/tex] from both sides:
[tex]\[ q - 2p - p = p + 4 - p \][/tex]
- Simplify the equation:
[tex]\[ q - 3p = 4 \][/tex]
3. Isolate [tex]\( p \)[/tex] by solving the equation [tex]\( q - 3p = 4 \)[/tex] for [tex]\( p \)[/tex]:
- Subtract [tex]\( q \)[/tex] from both sides:
[tex]\[ -3p = 4 - q \][/tex]
4. Divide both sides by [tex]\(-3\)[/tex] to solve for [tex]\( p \)[/tex]:
- The equation will be:
[tex]\[ p = \frac{4 - q}{-3} \][/tex]
5. Simplify the fraction (optional):
[tex]\[ p = \frac{4 - q}{-3} \][/tex]
This can also be written as:
[tex]\[ p = -\frac{4 - q}{3} \][/tex]
or equivalently,
[tex]\[ p = \frac{q - 4}{3} \][/tex]
So, the solution for [tex]\( p \)[/tex] is:
[tex]\[ p = \frac{q - 4}{3} \][/tex]
This means [tex]\( p \)[/tex] has now been expressed as the subject of the formula in terms of [tex]\( q \)[/tex].
1. Rewrite the given equation:
[tex]\[ q - 2p = p + 4 \][/tex]
2. Move all terms involving [tex]\( p \)[/tex] to one side and constant terms to the other side.
- First, subtract [tex]\( p \)[/tex] from both sides:
[tex]\[ q - 2p - p = p + 4 - p \][/tex]
- Simplify the equation:
[tex]\[ q - 3p = 4 \][/tex]
3. Isolate [tex]\( p \)[/tex] by solving the equation [tex]\( q - 3p = 4 \)[/tex] for [tex]\( p \)[/tex]:
- Subtract [tex]\( q \)[/tex] from both sides:
[tex]\[ -3p = 4 - q \][/tex]
4. Divide both sides by [tex]\(-3\)[/tex] to solve for [tex]\( p \)[/tex]:
- The equation will be:
[tex]\[ p = \frac{4 - q}{-3} \][/tex]
5. Simplify the fraction (optional):
[tex]\[ p = \frac{4 - q}{-3} \][/tex]
This can also be written as:
[tex]\[ p = -\frac{4 - q}{3} \][/tex]
or equivalently,
[tex]\[ p = \frac{q - 4}{3} \][/tex]
So, the solution for [tex]\( p \)[/tex] is:
[tex]\[ p = \frac{q - 4}{3} \][/tex]
This means [tex]\( p \)[/tex] has now been expressed as the subject of the formula in terms of [tex]\( q \)[/tex].