Select the correct answer.

If [tex]f(x)=x^{\frac{1}{2}}-x[/tex] and [tex]g(x)=2x^3-x^{\frac{1}{2}}-x[/tex], find [tex]f(x)-g(x)[/tex].

A. [tex]-2x^3-2x-2x^{\frac{1}{2}}[/tex]
B. [tex]-2x^3-2x[/tex]
C. [tex]2x^3-2x+2x^{\frac{1}{2}}[/tex]
D. [tex]-2x^3+2x^{\frac{1}{2}}[/tex]



Answer :

To solve the problem of finding [tex]\( f(x) - g(x) \)[/tex] given [tex]\( f(x) = x^{\frac{1}{2}} - x \)[/tex] and [tex]\( g(x) = 2x^3 - x^{\frac{1}{2}} - x \)[/tex], we need to follow these steps:

1. Write down the expressions for [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex]:
[tex]\[ f(x) = x^{\frac{1}{2}} - x \][/tex]
[tex]\[ g(x) = 2x^3 - x^{\frac{1}{2}} - x \][/tex]

2. Subtract [tex]\( g(x) \)[/tex] from [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) - g(x) = \left( x^{\frac{1}{2}} - x \right) - \left( 2x^3 - x^{\frac{1}{2}} - x \right) \][/tex]

3. Distribute the negative sign across the [tex]\( g(x) \)[/tex] terms:
[tex]\[ f(x) - g(x) = x^{\frac{1}{2}} - x - 2x^3 + x^{\frac{1}{2}} + x \][/tex]

4. Combine like terms:
- Combine the [tex]\( x^{\frac{1}{2}} \)[/tex] terms:
[tex]\[ x^{\frac{1}{2}} + x^{\frac{1}{2}} = 2x^{\frac{1}{2}} \][/tex]
- Combine the [tex]\( x \)[/tex] terms:
[tex]\[ -x + x = 0 \][/tex]
- Keep the term involving [tex]\( x^3 \)[/tex] as it is:
[tex]\[ -2x^3 \][/tex]

5. Write the simplified expression:
[tex]\[ f(x) - g(x) = 2x^{\frac{1}{2}} - 2x^3 \][/tex]

Therefore, the correct answer is:
[tex]\[ D. -2 x^3 + 2 x^{\frac{1}{2}} \][/tex]