Rewrite this complex number in rectangular form.

[tex]\[
\begin{array}{c}
z = 4 \left(\cos \left(\frac{7 \pi}{6}\right) + i \sin \left(\frac{7 \pi}{6}\right)\right) \\
z = [?] \sqrt{\square} + \square i
\end{array}
\][/tex]



Answer :

Sure, let's rewrite the given complex number [tex]\( z = 4 \left( \cos \left( \frac{7\pi}{6} \right) + i \sin \left( \frac{7\pi}{6} \right) \right) \)[/tex] in rectangular form.

1. Recall the polar form expression of a complex number:
[tex]\[ z = r (\cos \theta + i \sin \theta) \][/tex]

2. Here, the magnitude [tex]\( r \)[/tex] is 4 and the angle [tex]\( \theta \)[/tex] is [tex]\( \frac{7\pi}{6} \)[/tex].

3. The real part of the complex number is given by:
[tex]\[ \text{Real Part} = r \cos \theta = 4 \cos \left( \frac{7\pi}{6} \right) \][/tex]

4. The imaginary part of the complex number is given by:
[tex]\[ \text{Imaginary Part} = r \sin \theta = 4 \sin \left( \frac{7\pi}{6} \right) \][/tex]

So, the rectangular form [tex]\( a + bi \)[/tex] of the complex number is composed of the calculated real part and imaginary part.

Therefore, the real part calculated is:
[tex]\[ -3.4641016151377553 \][/tex]

The imaginary part calculated is:
[tex]\[ -1.999999999999999 \][/tex]

Thus, combining both, the rectangular form of the complex number is:
[tex]\[ z = -3.4641016151377553 - 2i \][/tex]

(Note: The value -1.999999999999999 is extremely close to -2 and can be expressed as -2 for simplicity.)

Therefore, the final rectangular form is approximately:
[tex]\[ z = -\sqrt{12} - 2i \][/tex]