Find the simplified product:

[tex]\[ \sqrt[3]{9 x^4} \cdot \sqrt[3]{3 x^8} \][/tex]

A. [tex]\(\sqrt[3]{12 x^{12}}\)[/tex]
B. [tex]\(\sqrt[3]{27 x^{12}}\)[/tex]
C. [tex]\(3 x^4\)[/tex]
D. [tex]\(9 x^6\)[/tex]



Answer :

Let's simplify the expression:
[tex]\[ \sqrt[3]{9 x^4} \cdot \sqrt[3]{3 x^8} \][/tex]

### Step-by-Step Solution:

#### Step 1: Express each term inside the cube root
First, we note that:
[tex]\[ \sqrt[3]{9 x^4} \cdot \sqrt[3]{3 x^8} \][/tex]

#### Step 2: Combine the terms under a single cube root
Using the property of radicals that [tex]\(\sqrt[3]{a} \cdot \sqrt[3]{b} = \sqrt[3]{a \cdot b}\)[/tex], we can combine the expressions:
[tex]\[ \sqrt[3]{9 x^4} \cdot \sqrt[3]{3 x^8} = \sqrt[3]{(9 x^4) \cdot (3 x^8)} \][/tex]

#### Step 3: Multiply the expressions inside the radicands
Next, we multiply the terms inside the radicands:
[tex]\[ (9 x^4) \cdot (3 x^8) = 9 \cdot 3 \cdot x^4 \cdot x^8 \][/tex]

#### Step 4: Simplify the multiplication of constants and variables
[tex]\[ 9 \cdot 3 = 27 \][/tex]
[tex]\[ x^4 \cdot x^8 = x^{4 + 8} = x^{12} \][/tex]

#### Step 5: Combine the results from previous steps
[tex]\[ (9 x^4) \cdot (3 x^8) = 27 x^{12} \][/tex]

#### Step 6: Apply the cube root to the simplified expression
[tex]\[ \sqrt[3]{27 x^{12}} \][/tex]

#### Step 7: Simplify the cube root
We know that:
[tex]\[ \sqrt[3]{27} = 3 \][/tex]
and:
[tex]\[ \sqrt[3]{x^{12}} = x^{12 / 3} = x^4 \][/tex]

#### Step 8: Combine the results
So, we have:
[tex]\[ \sqrt[3]{27 x^{12}} = 3 x^4 \][/tex]

### Conclusion:
The simplified product is:
[tex]\[ 3 x^4 \][/tex]

Thus, the correct answer is:
[tex]\[ 3 x^4 \][/tex]