Answer :

Certainly! Let's break down the problem step-by-step.

Given:
[tex]\[ x = \log(\sqrt{125}) \][/tex]

We need to find the value of [tex]\( x^2 + 1 \)[/tex].

### Step-by-Step Solution

1. Calculate [tex]\( \sqrt{125} \)[/tex]:

Recall that 125 can be factored as:
[tex]\[ 125 = 5^3 \][/tex]
Therefore,
[tex]\[ \sqrt{125} = \sqrt{5^3} = 5^{3/2} \][/tex]

Thus, the square root of 125 is approximately:
[tex]\[ \sqrt{125} \approx 11.180339887498949 \][/tex]

2. Calculate [tex]\( x = \log(\sqrt{125}) \)[/tex]:

We know that:
[tex]\[ x = \log(\sqrt{125}) \][/tex]
Substituting the value of [tex]\( \sqrt{125} \)[/tex] we get:
[tex]\[ x = \log(11.180339887498949) \][/tex]

The logarithm (in natural logarithm) of this value is approximately:
[tex]\[ x \approx 2.4141568686511508 \][/tex]

3. Calculate [tex]\( x^2 \)[/tex]:

Now, we square the value of [tex]\( x \)[/tex]:
[tex]\[ x^2 \approx (2.4141568686511508)^2 \approx 5.828153386455529 \][/tex]

4. Calculate [tex]\( x^2 + 1 \)[/tex]:

Finally, add 1 to [tex]\( x^2 \)[/tex]:
[tex]\[ x^2 + 1 \approx 5.828153386455529 + 1 = 6.828153386455529 \][/tex]

Therefore, the value of [tex]\( x^2 + 1 \)[/tex] is approximately:
[tex]\[ 6.828153386455529 \][/tex]