Type the correct answer in each box. Use numerals instead of words. If necessary, use [tex]$/$[/tex] for the fraction bar(s).

Solve the given system of equations.

[tex]\[
\begin{array}{l}
2y = -x + 9 \\
3x - 6y = -15
\end{array}
\][/tex]

The solution to the system is ( [tex]\square[/tex], [tex]\square[/tex] ).



Answer :

To solve the given system of equations:

[tex]\[ \begin{array}{l} 2y = -x + 9 \\ 3x - 6y = -15 \end{array} \][/tex]

we can follow these steps:

1. Re-arrange the first equation to express [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex]:

[tex]\[ 2y = -x + 9 \][/tex]

Divide both sides by 2:

[tex]\[ y = \frac{-x + 9}{2} \][/tex]

2. Substitute the expression for [tex]\( y \)[/tex] into the second equation:

The second equation is:

[tex]\[ 3x - 6y = -15 \][/tex]

Substitute [tex]\( y \)[/tex] from step 1:

[tex]\[ 3x - 6 \left( \frac{-x + 9}{2} \right) = -15 \][/tex]

3. Simplify and solve for [tex]\( x \)[/tex]:

Distribute the -6 inside the parentheses:

[tex]\[ 3x - 6 \left( \frac{-x}{2} + \frac{9}{2} \right) = -15 \][/tex]

[tex]\[ 3x - 6 \left( -\frac{x}{2} + \frac{9}{2} \right) = -15 \][/tex]

[tex]\[ 3x - \left( -3x + 27 \right) = -15 \][/tex]

[tex]\[ 3x + 3x - 27 = -15 \][/tex]

Combine like terms:

[tex]\[ 6x - 27 = -15 \][/tex]

Add 27 to both sides:

[tex]\[ 6x = 12 \][/tex]

Divide by 6:

[tex]\[ x = 2 \][/tex]

4. Substitute [tex]\( x = 2 \)[/tex] back into the expression for [tex]\( y \)[/tex]:

From step 1, we have:

[tex]\[ y = \frac{-x + 9}{2} \][/tex]

Substitute [tex]\( x = 2 \)[/tex]:

[tex]\[ y = \frac{-2 + 9}{2} \][/tex]

[tex]\[ y = \frac{7}{2} \][/tex]

Therefore, the solution to the system is:

[tex]\[ \left( 2, \frac{7}{2} \right) \][/tex]

So in the correct answer box for the solution to the system, we have:

The solution to the system is [tex]\( \left( 2, \frac{7}{2} \right) \)[/tex].