A student skipped a step when she tried to convert 15 hours to seconds, and she got the following incorrect result:

[tex]\[ 15 \text{ hours} \left(\frac{60 \text{ seconds}}{1 \text{ minute}}\right) = 900 \text{ seconds} \][/tex]

What conversion ratio did she skip in this multiple-step conversion?

A. [tex]\(\frac{1 \text{ minute}}{60 \text{ seconds}}\)[/tex]

B. [tex]\(\frac{1 \text{ hour}}{60 \text{ minutes}}\)[/tex]

C. [tex]\(\frac{60 \text{ seconds}}{1 \text{ minute}}\)[/tex]

D. [tex]\(\frac{60 \text{ minutes}}{1 \text{ hour}}\)[/tex]



Answer :

To convert 15 hours to seconds correctly, we need to follow a two-step process:

1. Convert hours to minutes:
[tex]\[ 15 \text{ hours} \times \frac{60 \text{ minutes}}{1 \text{ hour}} = 900 \text{ minutes} \][/tex]

2. Convert minutes to seconds:
[tex]\[ 900 \text{ minutes} \times \frac{60 \text{ seconds}}{1 \text{ minute}} = 54{,}000 \text{ seconds} \][/tex]

The student’s incorrect attempt shows:
[tex]\[ 15 \text{ hours} \times \frac{60 \text{ seconds}}{1 \text{ minute}} = 900 \text{ seconds} \][/tex]

Clearly, the student skipped the correct step for converting hours to minutes first, which involves:
[tex]\[ \frac{60 \text{ minutes}}{1 \text{ hour}} \][/tex]

By skipping this conversion, the student went directly from hours to seconds by using the wrong factor.

So, the conversion ratio skipped by the student is:
[tex]\[ \frac{60 \text{ minutes}}{1 \text{ hour}} \][/tex]

Thus, the correct answer is:
D. [tex]\(\frac{60 \text{ minutes}}{1 \text{ hour}}\)[/tex]