Which of the following is the range of the function based on the input-output table below?

\begin{tabular}{|c|c|}
\hline
Hours of training & Pay per month \\
\hline
10 & 1000 \\
\hline
20 & 1100 \\
\hline
30 & 1200 \\
\hline
40 & 1300 \\
\hline
50 & 1400 \\
\hline
60 & 1500 \\
\hline
70 & 1600 \\
\hline
\end{tabular}

A. [tex]$\{70, 1600, 60, 1500, 50, 1400, 40, 1300\}$[/tex]

B. [tex]$\{10, 1000, 20, 1100, 30, 1200\}$[/tex]

C. [tex]$\{1000, 1100, 1200, 1300, 1400, 1500, 1600\}$[/tex]

D. [tex]$\{10, 20, 30, 40, 50, 60, 70\}$[/tex]



Answer :

To determine the range of a function from an input-output table, we need to focus on the set of output values provided in the table.

In the given input-output table:

[tex]\[ \begin{array}{|c|c|} \hline \text{Hours of training} & \text{Pay per month} \\ \hline 10 & 1000 \\ \hline 20 & 1100 \\ \hline 30 & 1200 \\ \hline 40 & 1300 \\ \hline 50 & 1400 \\ \hline 60 & 1500 \\ \hline 70 & 1600 \\ \hline \end{array} \][/tex]

The "Hours of training" column lists the input values, while the "Pay per month" column lists the output values. According to the table, the "Pay per month" values are:

- 1000
- 1100
- 1200
- 1300
- 1400
- 1500
- 1600

The range of a function is defined as the set of all possible output values. Here, these output values are the "Pay per month" amounts.

Therefore, the range of the function is:

[tex]\(\{1000, 1100, 1200, 1300, 1400, 1500, 1600\}\)[/tex]

So, the correct answer is:

C. [tex]\(\{1000, 1100, 1200, 1300, 1400, 1500, 1600\}\)[/tex]