1. The rational number [tex]$0.33333 \ldots$[/tex] can also be written as:

(a) 0.3

(b) [tex][tex]$\frac{3}{10}$[/tex][/tex]

(c) 0.34

(d) [tex]$\frac{1}{3}$[/tex]



Answer :

To determine the rational number equivalent to the repeating decimal [tex]$0.33333\ldots$[/tex], follow these steps:

1. Define the Repeating Decimal:
Let [tex]\( x = 0.33333\ldots \)[/tex].

2. Express as an Equation:
Since [tex]\( 0.33333\ldots \)[/tex] repeats every digit, it can be expressed as [tex]\( x = 0.\overline{3} \)[/tex].

3. Eliminate the Repeating Decimal by Multiplication:
Multiply both sides by 10 (which is the base of the decimal representation), so:
[tex]\[ 10x = 3.33333\ldots \][/tex]
This step shifts the repeating decimal one place to the left.

4. Set Up a System of Equations to Eliminate the Decimal:
Now, subtract the original [tex]\( x = 0.33333\ldots \)[/tex] from this new equation:
[tex]\[ 10x - x = 3.33333\ldots - 0.33333\ldots \][/tex]
Simplifying the left-hand side and the right-hand side, you get:
[tex]\[ 9x = 3 \][/tex]

5. Solve for [tex]\( x \)[/tex]:
Divide both sides by 9:
[tex]\[ x = \frac{3}{9} \][/tex]
Simplify this fraction:
[tex]\[ x = \frac{1}{3} \][/tex]

Therefore, the rational number equivalent to the repeating decimal [tex]\( 0.33333\ldots \)[/tex] is [tex]\( \frac{1}{3} \)[/tex].

Hence, the correct answer is [tex]\( \boxed{1 / 3} \)[/tex].