Answer :

To solve the given exponential function

[tex]\[ y = -2 \left( \frac{1}{3} \right)^x + 6 \][/tex]

we need to find the values of [tex]\( y \)[/tex] for specified values of [tex]\( x \)[/tex]. Let's evaluate this function step-by-step for [tex]\( x = 1 \)[/tex], [tex]\( x = 2 \)[/tex], and [tex]\( x = 3 \)[/tex].

1. For [tex]\( x = 1 \)[/tex]:

Substitute [tex]\( x = 1 \)[/tex] into the function:

[tex]\[ y = -2 \left( \frac{1}{3} \right)^1 + 6 \][/tex]

Simplify the power:

[tex]\[ \left( \frac{1}{3} \right)^1 = \frac{1}{3} \][/tex]

So the equation becomes:

[tex]\[ y = -2 \times \frac{1}{3} + 6 \][/tex]

Multiply:

[tex]\[ y = -\frac{2}{3} + 6 \][/tex]

Convert 6 to a fraction with the same denominator:

[tex]\[ y = -\frac{2}{3} + \frac{18}{3} \][/tex]

Combine the fractions:

[tex]\[ y = \frac{-2 + 18}{3} = \frac{16}{3} \][/tex]

Hence, the value of [tex]\( y \)[/tex] when [tex]\( x = 1 \)[/tex] is approximately:

[tex]\[ y \approx 5.333 \][/tex]

2. For [tex]\( x = 2 \)[/tex]:

Substitute [tex]\( x = 2 \)[/tex] into the function:

[tex]\[ y = -2 \left( \frac{1}{3} \right)^2 + 6 \][/tex]

Simplify the power:

[tex]\[ \left( \frac{1}{3} \right)^2 = \frac{1}{9} \][/tex]

So the equation becomes:

[tex]\[ y = -2 \times \frac{1}{9} + 6 \][/tex]

Multiply:

[tex]\[ y = -\frac{2}{9} + 6 \][/tex]

Convert 6 to a fraction with the same denominator:

[tex]\[ y = -\frac{2}{9} + \frac{54}{9} \][/tex]

Combine the fractions:

[tex]\[ y = \frac{-2 + 54}{9} = \frac{52}{9} \][/tex]

Hence, the value of [tex]\( y \)[/tex] when [tex]\( x = 2 \)[/tex] is approximately:

[tex]\[ y \approx 5.778 \][/tex]

3. For [tex]\( x = 3 \)[/tex]:

Substitute [tex]\( x = 3 \)[/tex] into the function:

[tex]\[ y = -2 \left( \frac{1}{3} \right)^3 + 6 \][/tex]

Simplify the power:

[tex]\[ \left( \frac{1}{3} \right)^3 = \frac{1}{27} \][/tex]

So the equation becomes:

[tex]\[ y = -2 \times \frac{1}{27} + 6 \][/tex]

Multiply:

[tex]\[ y = -\frac{2}{27} + 6 \][/tex]

Convert 6 to a fraction with the same denominator:

[tex]\[ y = -\frac{2}{27} + \frac{162}{27} \][/tex]

Combine the fractions:

[tex]\[ y = \frac{-2 + 162}{27} = \frac{160}{27} \][/tex]

Hence, the value of [tex]\( y \)[/tex] when [tex]\( x = 3 \)[/tex] is approximately:

[tex]\[ y \approx 5.926 \][/tex]

So, the calculated values of [tex]\( y \)[/tex] are:
- For [tex]\( x = 1 \)[/tex], [tex]\( y \approx 5.333 \)[/tex]
- For [tex]\( x = 2 \)[/tex], [tex]\( y \approx 5.778 \)[/tex]
- For [tex]\( x = 3 \)[/tex], [tex]\( y \approx 5.926 \)[/tex]