Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----
Solve the following expression:
[tex]\[
\begin{array}{l}
(2x^2)(4) \\
(50) \div (2x) \\
(2) + (4) \\
\frac{25}{100} \div \frac{50x}{150}
\end{array}
\][/tex]
\=



Answer :

Let's break down and solve the given mathematical expression step by step:

Given expression:
[tex]\[ \begin{array}{l} \left(2 x^2\right)(4) \\ (50) \div \left(2 x^1\right) \\ (2)+(4) \\ \frac{25}{100} \div \frac{50 x}{150} \end{array} \][/tex]

### Step 1: Simplify [tex]\((2x^2)(4)\)[/tex]
[tex]\[ (2x^2) \cdot 4 = 2 \cdot 4 \cdot x^2 = 8x^2 \][/tex]

### Step 2: Simplify [tex]\(50 \div (2x^1)\)[/tex]
[tex]\[ 50 \div (2x) = \frac{50}{2x} = \frac{25}{x} \][/tex]

### Step 3: Simplify [tex]\((2)+(4)\)[/tex]
[tex]\[ 2 + 4 = 6 \][/tex]

### Step 4: Simplify [tex]\(\frac{25}{100} \div \frac{50x}{150}\)[/tex]
First, express the division as multiplication by the reciprocal:
[tex]\[ \frac{25}{100} \div \frac{50x}{150} = \frac{25}{100} \cdot \frac{150}{50x} \][/tex]
Now, simplify each fraction:
[tex]\[ \frac{25}{100} = \frac{1}{4} \][/tex]
[tex]\[ \frac{150}{50x} = \frac{150 \div 50}{50x \div 50} = \frac{3}{x} \][/tex]
Thus:
[tex]\[ \frac{1}{4} \cdot \frac{3}{x} = \frac{3}{4x} \][/tex]

### Combine the Results:
Summarizing all the simplified parts:
[tex]\[ (8x^2) + \left(\frac{25}{x}\right) + 6 + \left(\frac{3}{4x}\right) \][/tex]

We need to just present the terms together since they cannot be combined into a single integer value without specifying [tex]\(x\)[/tex]:
[tex]\[ 8x^2 + \frac{25}{x} + 6 + \frac{3}{4x} \][/tex]

This is the final simplified result for the given expression.