Answer :
Let's break down and solve the given mathematical expression step by step:
Given expression:
[tex]\[ \begin{array}{l} \left(2 x^2\right)(4) \\ (50) \div \left(2 x^1\right) \\ (2)+(4) \\ \frac{25}{100} \div \frac{50 x}{150} \end{array} \][/tex]
### Step 1: Simplify [tex]\((2x^2)(4)\)[/tex]
[tex]\[ (2x^2) \cdot 4 = 2 \cdot 4 \cdot x^2 = 8x^2 \][/tex]
### Step 2: Simplify [tex]\(50 \div (2x^1)\)[/tex]
[tex]\[ 50 \div (2x) = \frac{50}{2x} = \frac{25}{x} \][/tex]
### Step 3: Simplify [tex]\((2)+(4)\)[/tex]
[tex]\[ 2 + 4 = 6 \][/tex]
### Step 4: Simplify [tex]\(\frac{25}{100} \div \frac{50x}{150}\)[/tex]
First, express the division as multiplication by the reciprocal:
[tex]\[ \frac{25}{100} \div \frac{50x}{150} = \frac{25}{100} \cdot \frac{150}{50x} \][/tex]
Now, simplify each fraction:
[tex]\[ \frac{25}{100} = \frac{1}{4} \][/tex]
[tex]\[ \frac{150}{50x} = \frac{150 \div 50}{50x \div 50} = \frac{3}{x} \][/tex]
Thus:
[tex]\[ \frac{1}{4} \cdot \frac{3}{x} = \frac{3}{4x} \][/tex]
### Combine the Results:
Summarizing all the simplified parts:
[tex]\[ (8x^2) + \left(\frac{25}{x}\right) + 6 + \left(\frac{3}{4x}\right) \][/tex]
We need to just present the terms together since they cannot be combined into a single integer value without specifying [tex]\(x\)[/tex]:
[tex]\[ 8x^2 + \frac{25}{x} + 6 + \frac{3}{4x} \][/tex]
This is the final simplified result for the given expression.
Given expression:
[tex]\[ \begin{array}{l} \left(2 x^2\right)(4) \\ (50) \div \left(2 x^1\right) \\ (2)+(4) \\ \frac{25}{100} \div \frac{50 x}{150} \end{array} \][/tex]
### Step 1: Simplify [tex]\((2x^2)(4)\)[/tex]
[tex]\[ (2x^2) \cdot 4 = 2 \cdot 4 \cdot x^2 = 8x^2 \][/tex]
### Step 2: Simplify [tex]\(50 \div (2x^1)\)[/tex]
[tex]\[ 50 \div (2x) = \frac{50}{2x} = \frac{25}{x} \][/tex]
### Step 3: Simplify [tex]\((2)+(4)\)[/tex]
[tex]\[ 2 + 4 = 6 \][/tex]
### Step 4: Simplify [tex]\(\frac{25}{100} \div \frac{50x}{150}\)[/tex]
First, express the division as multiplication by the reciprocal:
[tex]\[ \frac{25}{100} \div \frac{50x}{150} = \frac{25}{100} \cdot \frac{150}{50x} \][/tex]
Now, simplify each fraction:
[tex]\[ \frac{25}{100} = \frac{1}{4} \][/tex]
[tex]\[ \frac{150}{50x} = \frac{150 \div 50}{50x \div 50} = \frac{3}{x} \][/tex]
Thus:
[tex]\[ \frac{1}{4} \cdot \frac{3}{x} = \frac{3}{4x} \][/tex]
### Combine the Results:
Summarizing all the simplified parts:
[tex]\[ (8x^2) + \left(\frac{25}{x}\right) + 6 + \left(\frac{3}{4x}\right) \][/tex]
We need to just present the terms together since they cannot be combined into a single integer value without specifying [tex]\(x\)[/tex]:
[tex]\[ 8x^2 + \frac{25}{x} + 6 + \frac{3}{4x} \][/tex]
This is the final simplified result for the given expression.