Answer :

Sure, let's analyze the given function [tex]\( f(x) = x^2 + 2x + 1 \)[/tex] step-by-step.

### Critical Values

1. First, we need to find the first derivative of the function [tex]\( f(x) \)[/tex]. The function is [tex]\( f(x) = x^2 + 2x + 1 \)[/tex].

Applying the power rule:

[tex]\[ f'(x) = \frac{d}{dx}(x^2 + 2x + 1) = 2x + 2 \][/tex]

2. Set the first derivative equal to zero to find critical points:

[tex]\[ 2x + 2 = 0 \][/tex]

Solving for [tex]\( x \)[/tex]:

[tex]\[ 2x = -2 \implies x = -1 \][/tex]

Therefore, the critical value is [tex]\( x = -1 \)[/tex].

### Relative Extrema

1. Next, we need to determine the nature of the critical value using the second derivative test.

We find the second derivative of [tex]\( f(x) \)[/tex]:

[tex]\[ f''(x) = \frac{d}{dx}(2x + 2) = 2 \][/tex]

2. Evaluate the second derivative at the critical value:

[tex]\[ f''(-1) = 2 \][/tex]

Since [tex]\( f''(-1) = 2 \)[/tex] which is greater than zero, it indicates that [tex]\( f(x) \)[/tex] is concave up at [tex]\( x = -1 \)[/tex].

Therefore, the critical value [tex]\( x = -1 \)[/tex] corresponds to a relative minimum.

### Conclusion

- Critical Value: The critical value of [tex]\( f(x) \)[/tex] is [tex]\( x = -1 \)[/tex].

- Relative Extrema: The relative extremum of [tex]\( f(x) \)[/tex] at [tex]\( x = -1 \)[/tex] is a relative minimum.